首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese superoxide dismutase (Mn-SOD) plays an important role in attenuating free radical-induced oxidative damage. The purpose of this research was to determine if increased expression of Mn-SOD gene alters intracellular redox status. Twelve week old male B6C3 mice, engineered to express human Mn-SOD in multiple organs, and their nontransgenic littermates were assessed for oxidative stress and antioxidant status in heart, brain, lung, skeletal muscle, liver, and kidney. Relative to their nontransgenic littermates, transgenic mice had significantly (p <.01) higher activity of Mn-SOD in heart, skeletal muscle, lung, and brain. Copper, zinc (Cu,Zn)-SOD activity was significantly higher in kidney, whereas catalase activity was lower in brain and liver. The activities of selenium (Se)-GSH peroxidase and non-Se-GSH peroxidase, and levels of vitamin E, ascorbic acid and GSH were not significantly different in any tissues measured between Mn-SOD transgenic mice and their nontransgenic controls. The levels of malondialdehyde were significantly lower in the muscle and heart of Mn-SOD mice, and conjugated dienes and protein carbonyls were not altered in any tissues measured. The results obtained showed that expression of human SOD gene did not systematical alter antioxidant systems or adversely affect the redox state of the transgenic mice. The results also suggest that expression of human SOD gene confers protection against peroxidative damage to membrane lipids.  相似文献   

2.
3.
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and cortex after 5 min of ischemia used as a preconditioning and subsequent reperfusion, by spectrophotometric methods. In all ischemia-reperfusion groups (5 h, 1 and 2 days of reperfusion), CuZn-SOD activities were found to be increased if compared to the sham operated controls. The increase was significant (P < 0.05) in all reperfusion groups, particularly after 5 h of reperfusion (3 times) in all studied brain regions; the largest increase was detected in the more vulnerable hippocampus and striatum. Very similar changes were found in Mn-SOD activity. The activity of CAT was increased too, but reached the peak of postischemic activity 24 h after ischemia. Our attempt to understand the mechanisms of increased SOD and CAT activities by application of protein synthesis inhibitor cycloheximide showed that this increase was caused by de novo synthesis of enzymes during first hours after ischemia. Our findings indicate that both major endogenous antioxidant enzymes SOD and CAT are synthesized as soon as 5 h after ischemia. In spite of significant upregulation of these enzymes a large number of neurons in selectively vulnerable CA1 region of hippocampus undergoes to neurodegeneration within 7 days after ischemia.  相似文献   

4.
M C Carrillo  K Kitani  S Kanai  Y Sato  G O Ivy 《Life sciences》1992,50(25):1985-1992
In a previous study we have shown that chronic administration of (-)deprenyl increases activities of superoxide dismutase (SOD) and catalase (CAT) in rat striatum (1). The present study attempted to clarify how specific the effect of deprenyl is to certain tissues and brain regions in the rat. Two mg/kg/day of deprenyl was continuously infused s.c. in young male Fischer-344 rats. On the 22nd day, rats were sacrificed and enzyme activities of SOD and CAT were determined in several different brain regions and the liver. Activities of both SOD and CAT were significantly increased in striatum and substantia nigra but not in hippocampus, cerebellum or liver. Both types of SOD (i.e. Cu Zn-SOD and Mn-SOD) were significantly increased in striatum, substantia nigra. Interestingly, in cerebral cortices of three different regions, activities also tended to increase (especially those of Mn-SOD), although the increase was not so striking as in substantia nigra and striatum. The results confirm the previous observation that (-)deprenyl can increase free radical scavenger enzyme activities in striatum and provide further evidence that this effect is selective to certain brain regions and tissue types.  相似文献   

5.
The induction of oxidative stress by TCDD in various brain regions of rats has been investigated after subchronic exposure. TCDD was administered by gavage to female Sprague-Dawley rats at daily doses of 0, 10, 22, and 46 ng/kg for 13 weeks. The brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs); the production of superoxide anion (SA) and lipid peroxides and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were determined in those regions. TCDD caused dose-dependent increases in the production of SA and lipid peroxidation in Cc and H and those were associated with dose-dependent suppressions of SOD. While a TCDD dose of 10 ng/kg/d resulted in significant increases in catalase and GSH-Px activities in Cc and H, doses of 22 and 46 ng/kg/d resulted in dose-dependent suppressions of these two enzymes in the same regions. In the C and Bs, TCDD treatment did not result in significant production of SA and lipid peroxidation but it resulted in dose-dependent increases in the activities of various antioxidant enzymes. These results suggest that Cc and H are vulnerable to TCDD-induced oxidative stress after subchronic exposure, and that C and Bs are protected against that effect.  相似文献   

6.
Superoxide dismutase (SOD) activity was measured in the brain and liver of 24–26- and 3-month-old rats. No significant age-related differences in Cu/Zn-SOD activity were found in any of the tissues studied. A small but significant increase in total SOD activity was observed in the whole brain (10-20%), cerebral cortex (11%), and hypothalamus (18%) of old rats, whereas a much more important increase in Mn-SOD activity was found in the whole brain (48%), cerebral cortex (70%), striatum (60%), and hypothalamus (30%). The increase of Mn-SOD activity in the brain of old rats suggests the enzyme may play an important role in the process of aging. Mn-SOD is found only in the mitochondrion, which could be an important site of oxygen free radical production, and a significant increase in the enzyme activity was also found in the lung of hypoxic rats. A significant decrease in total SOD and Mn-SOD activity was observed in the liver of old rats. Preliminary experiments in 23–24-month-old mice similarly showed an increase and a decrease in total SOD and Mn-SOD activity, respectively, in the whole brain and liver. These results suggest that the regulatory mechanisms of Mn-SOD in the brain and liver vary differentially with age.  相似文献   

7.
The relative contributions of catalase and the selenoenzyme glutathione peroxidase (GSH-Px) were elucidated in the rat liver by selectively modulating the activities of these enzymes using dietary selenium (Se) and the catalase inhibitor 3-amino-1,2,4-triazole (3-AT). Increased peroxidation occurred only in Se-deficient rats with markedly reduced cytosolic and mitochondrial GSH-Px activities. Although 3-AT treatment resulted in a 75% reduction of hepatic catalase activity and also a 20% reduction of both cytosolic and mitochondrial superoxide dismutase (SOD) activity, no incremental increase in peroxidation was observed over that associated with Se deficiency. In Se-deficient animals, treatment with 3-AT resulted in a doubling of cytosolic GSH-Px. This was associated with a 49% elevation in hepatic Se suggesting that increased Se may have contributed to the enhanced GSH-Px activity. These results suggest that GSH-Px plays the pivotal role in preventing hepatic peroxidation. Furthermore, the effects of 3-AT in vivo are not restricted to inhibition of catalase activity insofar as it also affects cytosolic GSH-Px activity and cytosolic and mitochondrial SOD activities.  相似文献   

8.
The overexpression of antioxidative enzymes such as CuZn-superoxide dismutase (SOD), Mn-SOD, and catalase has previously been reported to extend life span in transgenic flies (Drosophila melanogaster). The purpose of this study was to determine whether life-extending effects persist if the recipient control strains of flies are relatively long-lived. Accordingly, the life spans of large numbers of replicate control and overexpressor lines were determined in two long-lived genetic backgrounds involving a combined total of >90,000 flies. Significant increases in the activities of both CuZn-SOD and catalase had no beneficial effect on survivorship in relatively long-lived y w mutant flies and were associated with slightly decreased life spans in wild type flies of the Oregon-R strain. The introduction of additional transgenes encoding Mn-SOD or thioredoxin reductase in the same genetic background also failed to cause life span extension. In conjunction with data from earlier studies, the results show that increasing the activities of these major antioxidative enzymes above wild type levels does not decrease the rate of aging in long-lived strains of Drosophila, although there may be some effect in relatively short-lived strains.  相似文献   

9.
1. The aim of this work was to study potential mechanisms participating in postischemic protection of selectively vulnerable CA1 neurons in the hippocampus. Experiments were focused on measuring changes in endogenous antioxidant enzyme activity.2. Forebrain cerebral ischemia was induced in a rat by four-vessel occlusion. Ten minutes of ischemia induces so-called delayed neuronal death in selectively vulnerable CA1 region 3 days later. After 7 days of reperfusion, 71.6% of neurons succumb to neurodegeneration. When 5 min of ischemia was used as postconditioning, 2 days after 10 min of cerebral ischemia, delayed neuronal death in CA1 was almost completely (89.9%) prevented.3. Searching for mechanisms of protection, we measured the activity of endogenous antioxidant enzymes. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured in the hippocampus, striatum and cortex by spectrophotometric methods after 10 min of ischemia used as the preconditioning. Two days after the preconditioning or the sham operation, second ischemia was induced for 5 min. We observed significant increase of total SOD activity in all studied regions of the brain 5 h after postconditioning (5 min of ischemia). SOD activity decreased to control values after 24 h.4. In some experiments, we used intraperitoneal injections of norepinephrine (3.1 μM/kg) or 3-nitropropionic acid (20 mg/kg) as postconditioning, instead of ischemia. All three treatments resulted in significant increase of SOD activity, but norepinephrine was the most effective. The same effect as was seen for total SOD activity could be observed for CuZn-SOD as well as Mn-SOD activity. Similarly, considerable increase in the activity of catalase was detected 5 h after postconditioning (5 min of ischemia). It is interesting that the greatest changes were established in selectively vulnerable hippocampus and striatum. As in the case of SOD, the highest levels of CAT activity were induced by norepinephrine, while lower but significant increase in CAT activity was induced by 3-nitropropionic acid.5. Our results suggest that endogenous antioxidants SOD and CAT could play considerable neuroprotective role after postconditioning.  相似文献   

10.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   

11.
Free radicals mediated damage of phospholipids, proteins and nucleic acids results in subsequent neuronal degeneration and cell loss. Aim of this study was to evaluate the existence of lipid and protein oxidative damage and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in various rat brain structures 24 h after lateral fluid percussion brain injury (LFPI). Parietal cortex, hippocampus, thalamus, entorhinal cortex, and cerebellum from the ipsilateral hemisphere were processed for analyses of the thiobarbituric acid reactive substances (TBARS) and oxidized protein levels as well as for the SOD and GSH-Px activities. Immunohistochemical detection of oxidized proteins was also performed. Results of our study showed that LFPI caused significant oxidative stress in the parietal cortex and hippocampus while other brain regions tested in this study were not oxidatively altered by LFPI. GSH-Px activities were significantly increased in the parietal cortex and hippocampus, while the SOD activities remained unchanged following LFPI in all regions investigated.  相似文献   

12.
13.
Antioxidant responses to chronic hypoxia in the rat cerebellum and pons   总被引:6,自引:0,他引:6  
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.  相似文献   

14.
A manganese-containing superoxide dismutase (SOD; EC 1.15.1.1 [EC] )was purified to electrophoretic homogeneity from seeds of Norwayspruce (Picea abies L.). The apparent molecular mass of thepurified enzyme was 86 kDa, as determined by gel filtration.The subunit molecular mass, estimated by SDS-polyacrylamidegel electrophoresis, was 22 kDa both in the presence and inthe absence of 2-mercaptoethanol. Thus, the native enzyme isa homotetramer with subunits that were not linked by disulfidebonds. The isoelectric point of this Mn-SOD was 5.5. The specificactivity of the Mn-SOD was strongly pH-dependent and was 400units per nmol SOD at pH 7.8 and 30 units per nmol SOD at pH10.4. The first 25 amino acid residues in the amino terminalregion of spruce Mn-SOD exhibited a high degree of sequencehomology to those of Mn-SODs from other organisms. In Mn-deficientneedles the activity of Mn-SOD was only half of that in non-deficientneedles, whereas the activity of CuZn-SOD was doubled. (Received May 20, 1994; Accepted October 31, 1994)  相似文献   

15.
Histochemical localization of superoxide anion (O2·−) scavenging activity in rat brain was visualized by the tissue-blotting technique. The activity was thought to mainly depend on Cu/Zn-SOD, because the localization of the activity was identical with the immunohistochemistry of Cu/Zn-SOD and the localization of its mRNA in the brain. Moreover, the activity was dramatically decreased after treatment of Cu (I) chelater. The activity was detected in pyramidal cells of the cortex, granular, and mitral cells of the olfactory bulbs, pyramidal cell layer CA1 to CA3, and dentate gyrus of hippocampus formation and granular cells of the cerebellum. Moreover, the activity was detected in the pontine nuclei of brain stem. Olfactory bulbs, hippocampus, and cerebellum were believed to be bestowed high brain functions, i.e., long-term potentiation and long-term depression. A part of the function was regulated by a retrograde neurotransmitter, nitric oxide (·NO). Our findings suggest that the SOD is colocalized with NO synthase in olfactory bulbs, hippocampus, and cerebellum, where ·NO plays the important roles. In contrast, low SOD activity was observed in the axonal neurofiber bundles, although the regions contain a lot of membrane lipids, which was thought to be peroxidized by O2·− and related radicals such as ·OH in the regions. From these findings, it was suggested that the SOD did not only play a role in protecting the neurons from endogenously formed O2·−, but also play a role in preservation of beneficial natures of ·NO in the brain.  相似文献   

16.
The mechanism of growth inhibition mediated by tumor necrosis factor (TNF) is unclear. Since recent data strongly suggested that generation of superoxide is a key step in cytotoxicity of TNF, we reasoned that cells expressing high levels of enzymes that degrade superoxide radicals would be resistant to TNF. Therefore, we examined the TNF-sensitivity of bone marrow progenitor cells of transgenic mice that expressed the gene for human copper zinc-superoxide dismutase (CuZn-SOD). The CuZn-SOD is a key enzyme in the metabolism of superoxide radicals. Heterozygous and homozygous transgenic mice had 3- and 5-fold increased levels of CuZn-SOD activity, respectively. Bone marrow cells of transgenic and nontransgenic mice were plated in soft gel culture with TNF (0.01–100 ng/ml). TNF inhibited myeloid colony formation supported by either granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF from nontransgenic mice in a dose-dependent manner. In contrast, the myeloid clonal growth of homozygote transgenic mice was not inhibited by TNF at concentrations up to 100 ng/ml. As expected, the effects of TNF on erythroid clonogenic cells, which do not produce superoxide, and the action of transforming growth factor-β on myeloid progenitor cells, were similar in both transgenic and nontransgenic mice. These results suggest that the mechanism of TNF-mediated growth inhibition of hematopoietic cells occurs through production of superoxide. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Transgenic mice carrying the human mutated SOD1 gene with a glycine/alanine substitution at codon 93 (G93A) are a widely used model for the fatal human disease amyotrophic lateral sclerosis (ALS). In these transgenic mice, we carried out a neurochemical study not only restricted to the primarily affected regions, the cervical and lumbar segments of the spinal cord, but also to several other brain regions. At symptomatic (110 and 125 days of age), but not at pre-symptomatic (55 days of age) stages, we found significant decreases in catalytic activity of the cholinergic enzyme, choline acetyltransferase (ChAT) in the hippocampus, olfactory cortex and fronto-parietal cortex. In parallel, we observed a decreased number of basal forebrain cholinergic neurons projecting to these areas. No alterations of the cholinergic markers were noticed in the striatum and the cerebellum. A widespread marker for GABAergic neurons, glutamate decarboxylase (GAD), was unaffected in all the areas examined. Alteration of cholinergic markers in forebrain areas was paralleled by concomitant alterations in the spinal cord and brainstem, as a consequence of progressive apoptotic elimination of cholinergic motor neuron. Gestational supplementation of choline, while able to result in long-term enhancement of cholinergic activity, did not improve transgenic mice lifespan nor counteracted cholinergic impairment in brain regions and spinal cord.  相似文献   

18.
The current study examines the contribution of mitochondria-derived reactive oxygen species (ROS) in tert-butyl-hydroperoxide (TBH)-induced apoptotic signaling using clones of undifferentiated pheochromocytoma (PC-12) cells that stably overexpress the human mitochondrial or cytoplasmic forms of superoxide dismutase (SOD) (viz. Mn-SOD or CuZn-SOD, respectively). Exposure of wild type cells to TBH caused an early generation of ROS (30 min) that resulted in cell apoptosis at 24 h. These responses were attenuated with N-acetylcysteine pretreatment; however, N-acetylcysteine was ineffective in cytoprotection when added after TBH-induced ROS formation. Stable overexpression of SOD isoforms caused a 2- and 3.5-fold elevation in CuZn-SOD and Mn-SOD activities in the cytoplasm and mitochondria, respectively, and 3-fold increases in cellular GSH content. Accordingly, the stable overexpression of Mn-SOD attenuated TBH-induced mitochondrial ROS generation and cell apoptosis. Whereas transient Mn-SOD expression similarly prevented PC-12 apoptosis, this was associated with increases in SOD activity but not GSH, indicating that cytoprotection by Mn-SOD overexpression is related to mitochondrial ROS elimination and not due to increases in cellular GSH content per se. Stable or transient CuZn-SOD overexpression exacerbated cell apoptosis in conjunction with accelerated caspase-3 activation, regardless of cell GSH levels. Collectively, our results support a role for mitochondrial ROS in TBH-induced PC-12 apoptosis that is attenuated by Mn-SOD overexpression and is independent of cellular GSH levels per se.  相似文献   

19.
The total activity of superoxide dismutase (SOD) and cytosolic and particulate activity of SOD in human substantia nigra and cerebellum were measured by a spectrophotometric method based on the ability of SOD to inhibit the autoxidation of adrenaline. The cytosolic and particulate isoenzymes of SOD were differentiated by the inclusion of potassium cyanide which selectively inhibits cytosolic copper/zinc-dependent SOD activity. In autopsied human brains, there was no difference in total SOD activity, or the activity of SOD in cytosol in substantia nigra of patients dying with Parkinson's disease compared to age-matched controls. However, the activity of the particulate form of SOD was higher in the parkinsonian substantia nigra compared to control tissue. In the cerebellum there was no difference in the total, cytosolic, or particulate activity of SOD between parkinsonian patients and age-matched controls. Increased activity of SOD in particulate fraction may be a protective response to elevated levels of toxic free radicals in the parkinsonian substantia nigra. Alternatively, increased SOD activity may induce cell death through the accumulation of hydrogen peroxide.  相似文献   

20.
S C Grace 《Life sciences》1990,47(21):1875-1886
Three isozymes of superoxide dismutase (SOD) have been identified and characterized. The iron and manganese isozymes (Fe-SOD and Mn-SOD, respectively) show extensive primary sequence and structural homology, suggesting a common evolutionary ancestor. In contrast, the copper/zinc isozyme (CuZn-SOD) shows no homology with Fe-SOD or Mn-SOD, suggesting an independent origin for this enzyme. The three isozymes are unequally distributed throughout the biological kingdoms and are located in different subcellular compartments. Obligate anaerobes and aerobic diazotrophs contain Fe-SOD exclusively. Facultative aerobes contain either Fe-SOD or Mn-SOD or both. Fe-SOD is found in the cytosol of cyanobacteria while the thylakoid membranes of these organisms contain a tightly bound Mn-SOD. Similarly, most eukaryotic algae contain Fe-SOD in the chloroplast stroma and Mn-SOD bound to the thylakoids. Most higher plants contain a cytosol-specific and a chloroplast-specific CuZn-SOD, and possibly a thylakoid-bound Mn-SOD as well. Plants also contain Mn-SOD in their mitochondria. Likewise, animals and fungi contain a cytosolic CuZn-SOD and a mitochondrial Mn-SOD. The Mn-SOD found in the mitochondria of eukaryotes shows strong homology to the prokaryotic form of the enzyme. Taken together, the phylogenetic distribution and subcellular localization of the SOD isozymes provide strong support for the hypothesis that the chloroplasts and mitochondria of eukaryotic cells arose from prokaryotic endosymbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号