首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a critical tumor suppressor, p53 is inactivated in human cancer cells by somatic gene mutation or disruption of pathways required for its activation. Therefore, it is critical to elucidate the mechanism underlying p53 activation after genotoxic and cellular stresses. Accumulating evidence has indicated the importance of posttranslational modifications such as acetylation in regulating p53 stability and activity. However, the physiological roles of the eight identified acetylation events in regulating p53 responses remain to be fully understood. By employing homologous recombination, we introduced various combinations of missense mutations (lysine to arginine) into eight acetylation sites of the endogenous p53 gene in human embryonic stem cells (hESCs). By determining the p53 responses to DNA damage in the p53 knock-in mutant hESCs and their derivatives, we demonstrate physiological importance of the acetylation events within the core domain (K120 and K164) and at the C-terminus (K370/372/373/381/382/ 386) in regulating human p53 responses to DNA damage.  相似文献   

2.
Cancer is a genetic disease and carcinogenesis is the process whereby the relevant genetic alterations are acquired. Environmental carcinogens may damage DNA to induce mutations and chromosomal aberrations as permanent heritable changes in the genome that initiate carcinogenesis. For many carcinogens initiation of carcinogenesis requires the initiation of DNA replication suggesting that genetic alterations are fixed in the genome during replication of damaged DNA. It is of great interest to understand the mechanisms whereby carcinogen-induced damage to DNA causes mutations and chromosomal aberrations, and how cells may resist such events. It is clear now that cells express a complex repertoire of responses to DNA damage including several pathways of DNA repair and cell cycle checkpoints that protect against carcinogenesis. This commentary is concerned with the protective influence of DNA damage checkpoints that delay or arrest progression through the cell division cycle and especially with the responses of S phase cells to the environmental carcinogens UV and benzo[a]pyrene diolepoxide I (BPDE). Recent studies indicate that checkpoint responses may act at the very point of replication of damaged DNA to slow DNA chain elongation, inhibit replicon initiation, and suppress initiation of carcinogenesis.  相似文献   

3.
Molecular anatomy of the DNA damage and replication checkpoints   总被引:12,自引:0,他引:12  
Qin J  Li L 《Radiation research》2003,159(2):139-148
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.  相似文献   

4.
DNA damage responses to oxidative stress   总被引:12,自引:0,他引:12  
Barzilai A  Yamamoto K 《DNA Repair》2004,3(8-9):1109-1115
The DNA damage response is a hierarchical process. DNA damage is detected by sensor proteins such as the MRN complex that transmit the information to transducer proteins such as ATM and ATR, which control the damage response through the phosphorylation of effector proteins. The extent of the DNA damage determines cell fate: cell cycle arrest and DNA repair or the activation of apoptotic pathways. In aerobic cells, reactive oxygen species (ROS) are generated as a by-product of normal mitochondrial activity. If not properly controlled, ROS can cause severe damage to cellular macromolecules, especially the DNA. We describe here some of the cellular responses to alterations in the cellular redox state during hypoxia or oxidative stress. Oxidative damage in DNA is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest of the three excision repair pathways. To allow time for DNA repair, the cells activate their cell cycle checkpoints, leading to cell cycle arrest and preventing the replication of damage and defective DNA.  相似文献   

5.
Telomeres protect the ends of linear chromosomes from activities that cause sequence losses or challenge chromosome integrity. Furthermore, these ends must be hidden from detection by the DNA damage recognition and response pathways. In particular, they must not fuse with each other. These fundamental and very first functions attributed to telomeres are also summarized with the term ‘chromosome capping’. However, telomeres can become uncapped and the foremost cellular responses to such events aim to restore genome stability in the most conservative fashion possible. I will provide an outline of cellular responses to uncapping in budding yeast and briefly discuss the reverse, namely avoidance mechanisms that prevent telomere formation at inappropriate places.  相似文献   

6.
The cytopathic effect (CPE) seen with some subgroups of avian sarcoma and leukosis virus (ASLV) is associated with viral Env activation of the death-promoting activity of TVB (a tumor necrosis factor receptor-related receptor that is most closely related to mammalian TNF-related apoptosis-inducing ligand [TRAIL] receptors) and with viral superinfection leading to unintegrated viral DNA (UVD) accumulation, which is presumed to activate a cellular DNA damage response. In this study, we employed cells that express signaling-deficient ASLV receptors to demonstrate that an ASLV CPE can be uncoupled from the death-promoting functions of the TVB receptor. However, these cell-killing events were associated with much higher levels of viral superinfection and DNA accumulation than those seen when the virus used signaling-competent TVB receptors. These findings suggest that a putative cellular DNA damage response that is activated by UVD accumulation might act in concert with the death-signaling pathways activated by Env-TVB interactions to trigger cell death. Such a model is consistent with the well-established synergy that exists between TRAIL-signaling pathways and DNA damage responses which is currently being exploited in cancer therapy regimens.  相似文献   

7.
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.Since the publication of DNA Repair and Mutagenesis in 2006 (Friedberg et al. 2006), our understanding of bacterial DNA damage responses has progressed significantly. Some studies have refined known pathways and filled in important details, whereas other studies have uncovered surprising new pathways such as bacterial programmed cell death and a form of replicative repair that reconstitutes severely shattered genomes. This review will focus on these recent advances, with only limited discussion and citation to work that precedes the 2006 tome.  相似文献   

8.
9.
Wen L  Li W  Sobel M  Feng JA 《Proteins》2006,65(1):103-110
Molecular signaling events regulate cellular activity. Cancer stimulating signals trigger cellular responses that evade the regulatory control of cell development. To understand the mechanism of signaling regulation in cancer, it is necessary to identify the activated pathways in cancer. We have developed RepairPATH, a computational algorithm that explores the activated signaling pathways in cancer. The RepairPATH integrates RepairNET, an assembled protein interaction network associated with DNA damage response, with the gene expression profiles derived from the microarray data. Based on the observation that cofunctional proteins often exhibit correlated gene expression profiles, it identifies the activated signaling pathways in cancer by systematically searching the RepairNET for proteins with significantly correlated gene expression profiles. Analyzing the gene expression profiles of breast cancer, we found distinct similarities and differences in the activated signaling pathways between the samples from the patients who developed metastases and the samples from the patients who were disease free within 5 years. The cellular pathways associated with the various DNA repair mechanisms and the cell-cycle checkpoint controls are found to be activated in both sample groups. One of the most intriguing findings is that the pathways associated with different cellular processes are functionally coordinated through BRCA1 in the disease-free sample group, whereas such functional coordination is absent in the samples from patients who developed metastases. Our analysis revealed the potential cellular pathways that regulate the signaling events in breast cancer.  相似文献   

10.
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.  相似文献   

11.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

12.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

13.
The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain unknown. Here, we show that the Ies4 subunit of the INO80 complex is phosphorylated by the Mec1/Tel1 kinases during exposure to DNA-damaging agents. Mutation of Ies4's phosphorylation sites does not significantly affect DNA repair processes, but does influence DNA damage checkpoint responses. Additionally, ies4 phosphorylation mutants are linked to the function of checkpoint regulators, such as the replication checkpoint factors Tof1 and Rad53. These findings establish a chromatin remodeling complex as a functional component in the Mec1/Tel1 DNA damage signaling pathway that modulates checkpoint responses and suggest that posttranslational modification of chromatin remodeling complexes regulates their involvement in distinct processes.  相似文献   

14.
Significant progress has been made in recent years in elucidating the molecular controls of cellular responses to DNA damage in mammalian cells. Much of our understanding of the mechanisms involved in cellular DNA damage response pathways has come from studies of human cancer susceptibility syndromes that are altered in DNA damage responses. Ataxia-telangiectasia mutated (ATM), the gene mutated in the disorder ataxia-telangiectasia, codes for a protein kinase that is a central mediator of responses to DNA double-strand breaks (DSB) in cells. Once activated, ATM phosphorylates numerous substrates in the cell that modulate the response of the cell to the DNA damage. We recently developed a novel system to create DNA DSBs at defined endogenous sites in the human genome and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation. Results from this system showed the functional importance of ATM kinase activity and phosphorylation in the response to DSBs and supported a model in which ordered chromatin structure changes that occur after DNA breakage and that depend on functional NBS1 and ATM facilitate DNA DSB repair. Insights about these pathways provide us with opportunities to develop new approaches to benefit patients. Examples and opportunities for developing inhibitors that act as sensitizers to chemotherapy or radiation therapy or activators that could improve responses to cellular stresses, such as oxidative damage, are discussed. Relevant to the latter, we have shown benefits of an ATM activator in disease settings ranging from metabolic syndrome to cancer prevention.  相似文献   

15.
DNA damage that is not properly repaired during genomic replication is a major source of gross chromosomal rearrangements and sequence loss during cell proliferation. In higher eukaryotes such mutations increase the risk of cancer. Eukaryotic cells have multiple checkpoint responses activated by DNA damage and stalled replication forks. We focus here on fork-associated events that activate and respond to S-phase checkpoint kinases.  相似文献   

16.
In the current study we present a view of events leading to chemically induced DNA damage in vitro from both a cytogenetic and molecular aspect, focusing on threshold mediated responses and the biological relevance of DNA damaging events that occur at low and high cellular toxicity levels. Current regulatory mechanisms do not take into account chemicals that cause significant DNA damage only at high toxicity. Our results demonstrate a defined threshold for micronucleus induction after insult with the alkylating agent MMS. Other results define a significant change in gene expression following treatment with chemicals that give rise to structural DNA damage only at high toxicity. Pairs of chemicals with a similar mode of action but differing toxicity levels were chosen, the chemicals that demonstrated structural DNA damage only at high levels of toxicity showed an increase in heat shock protein gene expression whereas the chemicals causing DNA damage events at all levels of toxicity did not induce changes in heat shock gene expression at identical toxicity levels. The data presented indicates that there are a number of situations where the linear dose response model is not appropriate for risk estimation. However, deviation from linear risk models should be dependent upon the availability of appropriate experimental data such as that shown here.  相似文献   

17.
The aging stress response   总被引:1,自引:0,他引:1  
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.  相似文献   

18.
The cellular response to DNA damage signaling by mismatch-repair (MMR) proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study, we investigate correlated motions in response to the binding of mismatched and platinum cross-linked DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer-causing mutations or deletions. This confirms MSH2's role in signaling DNA damage-induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin.  相似文献   

19.
The integrity of the genome is constantly challenged by intrinsic and extrinsic genotoxic stresses that damage DNA. The cellular responses to DNA damage are orchestrated by DNA damage signaling pathways, also known as DNA damage checkpoints. These signaling pathways play crucial roles in detecting DNA damage, regulating DNA repair and coordinating DNA repair with other cellular processes. In vertebrates, the ATM- and Rad3-related (ATR) kinase plays a key role in the response to a broad spectrum of DNA damage and DNA replication stress. Here, we will discuss the recent findings on how ATR is activated by DNA damage and how it protects the genome against interference with DNA replication.  相似文献   

20.
Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号