首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is well supported by the results from experimental perturbation studies related to DNA replication stress response.  相似文献   

3.
Daye ZJ  Chen J  Li H 《Biometrics》2012,68(1):316-326
We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis.  相似文献   

4.
5.
Expression quantitative trait loci (eQTL) mapping is a widely used technique to uncover regulatory relationships between genes. A range of methodologies have been developed to map links between expression traits and genotypes. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) initiative is a community project to objectively assess the relative performance of different computational approaches for solving specific systems biology problems. The goal of one of the DREAM5 challenges was to reverse-engineer genetic interaction networks from synthetic genetic variation and gene expression data, which simulates the problem of eQTL mapping. In this framework, we proposed an approach whose originality resides in the use of a combination of existing machine learning algorithms (committee). Although it was not the best performer, this method was by far the most precise on average. After the competition, we continued in this direction by evaluating other committees using the DREAM5 data and developed a method that relies on Random Forests and LASSO. It achieved a much higher average precision than the DREAM best performer at the cost of slightly lower average sensitivity.  相似文献   

6.
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn''t make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.  相似文献   

7.
Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects.  相似文献   

8.
9.
10.
11.
12.
Discovering regulatory interactions from time-course gene expression data constitutes a canonical problem in functional genomics and systems biology. The framework of graphical Granger causality allows one to estimate such causal relationships from these data. In this study, we propose an adaptively thresholding estimates of Granger causal effects obtained from the lasso penalization method. We establish the asymptotic properties of the proposed technique, and discuss the advantages it offers over competing methods, such as the truncating lasso. Its performance and that of its competitors is assessed on a number of simulated settings and it is applied on a data set that captures the activation of T-cells.  相似文献   

13.
14.
Recent advances in high-throughput DNA microarrays and chromatin immunoprecipitation (ChIP) assays have enabled the learning of the structure and functionality of genetic regulatory networks. In light of these heterogeneous data sets, this paper proposes a novel approach for reconstruction of genetic regulatory networks based on the posterior probabilities of gene regulations. Built within the framework of Bayesian statistics and computational Monte Carlo techniques, the proposed approach prevents the dichotomy of classifying gene interactions as either being connected or disconnected, thereby it reduces significantly the inference errors. Simulation results corroborate the superior performance of the proposed approach relative to the existing state-of-the-art algorithms. A genetic regulatory network for Saccharomyces cerevisiae is inferred based on the published real data sets, and biological meaningful results are discussed.  相似文献   

15.

Background

Increasing number of eQTL (Expression Quantitative Trait Loci) datasets facilitate genetics and systems biology research. Meta-analysis tools are in need to jointly analyze datasets of same or similar issue types to improve statistical power especially in trans-eQTL mapping. Meta-analysis framework is also necessary for ChrX eQTL discovery.

Results

We developed a novel tool, meta-eqtl, for fast eQTL meta-analysis of arbitrary sample size and arbitrary number of datasets. Further, this tool accommodates versatile modeling, eg. non-parametric model and mixed effect models. In addition, meta-eqtl readily handles calculation of chrX eQTLs.

Conclusions

We demonstrated and validated meta-eqtl as fast and comprehensive tool to meta-analyze multiple datasets and ChrX eQTL discovery. Meta-eqtl is a set of command line utilities written in R, with some computationally intensive parts written in C. The software runs on Linux platforms and is designed to intelligently adapt to high performance computing (HPC) cluster. We applied the novel tool to liver and adipose tissue data, and revealed eSNPs underlying diabetes GWAS loci.  相似文献   

16.
Summary Genomic instability, the propensity of aberrations in chromosomes, plays a critical role in the development of many diseases. High throughput genotyping experiments have been performed to study genomic instability in diseases. The output of such experiments can be summarized as high‐dimensional binary vectors, where each binary variable records aberration status at one marker locus. It is of keen interest to understand how aberrations may interact with each other, as it provides insight into the process of the disease development. In this article, we propose a novel method, LogitNet, to infer such interactions among these aberration events. The method is based on penalized logistic regression with an extension to account for spatial correlation in the genomic instability data. We conduct extensive simulation studies and show that the proposed method performs well in the situations considered. Finally, we illustrate the method using genomic instability data from breast cancer samples.  相似文献   

17.
The genomic structure surrounding a T-DNA integration site in a transgenic petunia plant, which shows deregulation of a root-specific promoter, was investigated. We have already demonstrated that T-DNA integration in this transformant (P13) had occurred close to a scaffold/matrix attachment region (S/MAR). A major question regarding the observed promoter leakiness was whether the T-DNA had integrated into the centre or at the border of the Petun-SAR and whether other regulatory elements are located within this genomic region. While small rearrangements were shown to occur during T-DNA integration in agreement with other reports, we find indications of the presence of a SINE retroposon – an apparent landmark for recombinogenic targets – at the integration site. Binding assays to both plant and animal nuclear scaffolds, supported by biomathematical analyses, reveal that the T-DNA is definitely located at the border of a strong S/MAR, which is in agreement with current models on the structure of integration sites. These results, together with a developmentally regulated leaf-specific enhancer effect of the Petun-SAR on gene expression in transgenic tobacco plants, indicate that the Petun-SAR demarcates the right border of a chromatin domain with genes predominantly active in leaves.  相似文献   

18.
核开关是一类通过结合小分子代谢物调控基因表达的mRNA元件.它位于特定的mRNA区域,可以不依赖任何蛋白质因子而直接结合小分子代谢物,继而发生构象重排,影响该mRNA的活动.核开关在特定细菌中,参与调控包括维生素B12和甲硫氨酸生物合成等在内的代谢途径.核开关的发现,尤其是其可以特异性紧密结合特定配体,从而精确调控生物基本代谢途径的特征,使人们开始关注它在科研和医学上的应用潜力.核开关的研究进展、主要特点和作用机制已经引起了人们的关注和思考.  相似文献   

19.
20.
Late-onset Alzheimer''s disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1–6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score <3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号