共查询到20条相似文献,搜索用时 19 毫秒
1.
Molecular cloning, expression and characterization of a chitosanase from Microbacterium sp. 总被引:1,自引:0,他引:1
A gene encoding a chitosanase (mschito) was cloned from Microbacterium sp. OU01. The ORF consists of 801 bp which encoded a polypeptide of 266 amino acid residues. The deduced amino acid sequence
shows 98% identity to that of the chitosanase reported in Pseudomonas sp. A-01. In addition, the fusion protein containing MSCHITO was expressed in E. coli and purified using Ni-NTA affinity chromatography. The purified rMSCHITO protein degraded the chitosan (the degree of deacetylation
of 99%) and produced a mixture of chitooligosaccharides. The MSCHITO is thus an endo-chitosanase. 相似文献
2.
Bae IY Oh IK Lee S Yoo SH Lee HG 《International journal of biological macromolecules》2008,42(1):10-13
Levan polysaccharides were produced from Microbacterium laevaniformans and its rheological behaviors were characterized as a function of concentration and temperature. The intrinsic viscosity of the purified levan was determined to be 0.38dL/g at 25 degrees C which was relatively higher than that of levans from other microbial sources. The flow behaviors of the levan solutions were characterized by the increase in the shear stress, giving more increments in the shear rate. Thus, the levan solutions exhibited the pseudoplastic behavior, which was characterized by the power law model. In addition, the flow behaviors of the levans were satisfactorily fitted to the Arrhenius equation where the activation energy of flow (Ea) decreased from 24.07 to 13.53kJ/mol (R2=0.98-0.99) with increasing concentrations. Moreover, the exponential equation was favorably applied to describe the effect of concentration on the apparent viscosity of the levan polysaccharides. 相似文献
3.
Immobilization of levan fructotransferase for the production of di-fructose anhydride from levan 总被引:1,自引:0,他引:1
Levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032 was immobilized on various carriers of which Chitopearl BCW2501 beads showed the higher activity of 320 U g–1 for the formation of di-fructose anhydride compounds. The immobilized enzyme retained about 60% of its initial activity after being used for 20 cycles. 相似文献
4.
A microorganism producing levan fructotransferase was isolated from sugar-disclosed soil and it was identified as Arthrobacter ureafaciens. The major product from levan by enzyme reaction was identified as di-D-fructofuranose 2,6':6,2' dianhydride by mass spectrometry, nuclear magnetic resonance, and chemical analyses. Small amounts of several oligosaccharides and free fructose were also formed by enzyme reaction. An extracellular enzyme that produces di-D-fructofuranose 2,6':6,2' dianhydride from levan was purified from the culture broth of A. ureafaciens K2032. The enzyme had optimum activity around pH 5.8 and 45 degrees C and had a dimeric form in solution. The N-terminal amino acid residues of the purified enzyme were SAPGSLRAVYHMTPPSGXLXDPQ. The enzyme has narrow substrate range and converts the levan to di-D-fructofuranose 2,6':6,2' dianhydride with around 62.5% conversion yield. 相似文献
5.
AIMS: Isolation and characterization of the xanthan-degrading Microbacterium sp. XT11. METHODS AND RESULTS: The bacterial isolate XT11, capable of fragmenting xanthan, has been isolated from soil sample. Morphological and biochemical analyses, as well as 16S rRNA gene sequence comparisons, demonstrated that strain XT11 should be grouped in the genus Microbacterium, and represented a new member in this family. Xanthan could be degraded by the xanthan-degrading enzyme released from strain XT11. It has been shown that xantho-oligosaccharides fragmented from xanthan had both elicitor activity and antibacterial effect against Xanthomonas campestris pv. campestris. CONCLUSIONS: The xanthan-degrading enzyme produced by the newly isolated XT11 could fragment xanthan to form oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: Xanthan-degrading products would be useful for potential application in the control of black rot of cruciferous plants caused by X. campestris pv. campestris and, as an oligosaccharide elicitor, in making these plants resistant to disease. 相似文献
6.
Lei Kai Xiao-Hang Ma Xue-Lai Zhou Xiao-Ming Jia Xia Li Kang-Ping Guo 《World journal of microbiology & biotechnology》2008,24(3):401-406
In order to study the properties of a thermostable uricase produced by Microbacterium sp. strain ZZJ4-1, the enzyme was purified by ammonium sulfate precipitation and DEAE-cellulose ion exchange, hydrophobic
and molecular sieve chromatography. The molecular mass of the purified enzyme was estimated to be 34 kDa by SDS-PAGE. The
enzyme was stable between pH 7.0 and 10.00. The optimal reaction temperature of the enzyme was 30 °C at pH 8.5. The K
m
and K
cat
of the enzyme were 0.31 mM and 3.01 s−1, respectively. Fe3+ could enhance the enzyme activity, whereas Ag+, Hg2+, o-phenanthroline and SDS inhibited the activity of the enzyme considerably. After purification, the enzyme was purified 19.7-fold
with 31% yield. As compared with uricases from other microbial sources, the purified enzyme showed excellent thermostability
and other unique characteristics. The results of this work showed that strains of Microbacterium could be candidates for the production of a thermostable uricase, which has the potential clinical application in measurement
of uric acid. 相似文献
7.
8.
为了研究微杆菌Microbacterium sp.ZZJ4-1菌株的耐热尿酸氧化酶(Uox)的性质,克隆其基因(uox),得到1个894 bp的开放阅读框。该基因与多数已报道的uox无明显同源性,仅与球形节杆菌Arthrobacterglobiformis的uox有72%的同源性。将基因插入质粒pET-15b构成pET-15b-uox表达载体,转化至Escherichiacoli BL21(DE3)中诱导表达。对重组Uox的主要理化性质研究表明:该酶由大小约为35 kDa的亚基组成;其最佳反应温度和pH分别为30℃和7.5;在65℃以下和pH 8.5~11.0范围内稳定;以尿酸为底物的Km值为0.22 mmol/L;Ag+、Zn2+、Cu2+和SDS均能完全抑制酶活,Tween 20、Tween 80和Triton X-100对酶活有一定的促进作用。该重组酶的耐热性是目前报道的重组Uox中最好的,这一特性有利于其在诊断治疗中的开发应用。 相似文献
9.
Kim CS Hong CK Kim KY Wang XL Kang SI Kim SI 《Journal of microbiology and biotechnology》2007,17(1):37-43
A gene encoding inulin fructotransferase (di-D-fructofuranose 1,2': 2,3' dianhydride [DFA III]-producing IFTase, EC 4.2.2.18) from Bacillus sp. snu-7 was cloned. This gene was composed of a single, 1,353-bp open reading frame encoding a protein composed of a 40-amino acid signal peptide and a 410-amino acid mature protein. The deduced amino acid sequence was 98% identical to Arthrobacter globiformis C11-1 IFTase (DFA III-producing). The enzyme was successfully expressed in E. coli as a functionally active, His-tagged protein, and it was purified in a single step using immobilized metal affinity chromatography. The purified enzyme showed much higher specific activity (1,276units/mg protein) than other DFA III-producing IFTases. The recombinant and native enzymes were optimally active in very similar pH and temperature conditions. With a 103-min half-life at 60 degrees C, the recombinant enzyme was as stable as the native enzyme. Acidic residues and cysteines potentially involved in the catalytic mechanism are proposed based on an alignment with other IFTases and a DFA IIIase. 相似文献
10.
Moon KO Choi KH Kang HY Oh JI Jang SB Park CS Lee JH Cha J 《Journal of microbiology and biotechnology》2008,18(6):1064-1069
Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose- 2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase. 相似文献
11.
Purification and Characterization of Two Types
of Chitosanase from a Microbacterium sp. 总被引:4,自引:0,他引:4
Two extracellular chitosanases (ChiX and ChiN) were extracted from Microbacterium sp. OU01 with Mr values of 81 kDa (ChiX) and 30 kDa (ChiN). ChiN was optimally active at pH 6.2 and 50°C and ChiX at pH 6.6 and 60°C (assayed over 15 min). Both the activities increased with the degree of deacetylation (DDA) of chitosan. ChiN hydrolyzed oligomers of glucosamine (GlcN) larger than chitopentaose, and chitosan with 62–100% DDA; but ChiX acted on chitosan and released GlcN. Hydrolysis of chitosan with 99% DDA by ChiN released chitobiose, chitotriose and chitotetraose as the major products. 相似文献
12.
A purified levan fructotransferase preparation from the culture of the bacterium Arthrobacter ureafaciens, which produces di-D-fructose 2,6':6,2' dianhydride (difructose anhydride IV) from levan by an intramolecular levan fructosyl transfer (ILFT) reaction, was found to produce a trioligofructan and a tetraoligofructan from levan in the presence of levanbiose, indicating the intermolecular fructosyl and levanbiosyl transfer (LFT and LBT) reactions. The tri- and tetraoligofructans were identified to be levantriose and -tetraose respectively. Increase in the levanbiose concentration brought about increased production of both oligofructans with decreased formation of difructose anhydride IV, supporting the previous theory proposed by Tanaka et al. (1983) that the ILFT, LFT, and LBT reactions are catalyzed by the same enzyme. In addition, there existed a roughly stoichiometric relationship between the increase and decrease in the productions of these oligofructans, and the LBT reaction was found to occur more intensively than the LFT reaction. Acceptor specificity of the LFT and LBT reactions was studied using fifteen sugars including mono-, di-, and trisaccharides. The enzyme showed both of the reactions only with levanbiose, -triose, and kestose, indicating that the exposed non-reducing levanbiosyl residue was essential for the acceptor and suggesting the existence of a levanbiosyl acceptor site on the enzyme molecule. 相似文献
13.
Purification and properties of a keratinolytic metalloprotease from Microbacterium sp 总被引:1,自引:0,他引:1
AIMS: This study was developed to purify and to characterize a keratinolytic protease from the bacterium Microbacterium sp. strain kr10. METHODS AND RESULTS: Enzyme purification was carried out by sequential liquid chromatography on Sephadex G-100 and Q-Sepharose columns. The purification was about 255-fold, with a yield of 34%, as determined with azocasein as substrate. The molecular weight of the enzyme was estimated as 42,000 Da by SDS-PAGE. The enzyme had pH and temperature optima of 7.5 and 50 degrees C respectively. This keratinase was inhibited by EDTA and 1,10-phenanthroline, and analysis of metal content indicates that Zn(2+) and Mg(2+) are present. A 2(2) factorial design was developed to investigate the effect of keratinase and mercaptoacetate concentration on feather keratinolysis. Statistical analysis showed that both variables have a significant effect on hydrolysis of keratin. CONCLUSIONS: A new keratinase produced by Microbacterium sp. was purified and characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: This keratinolytic enzyme offers an interesting potential for the hydrolysis of keratin wastes to be used as feed supplement or bioconversion to added-value products. 相似文献
14.
J Park MI Kim YD Park I Shin J Cha CH Kim S Rhee 《The Journal of biological chemistry》2012,287(37):31233-31241
Levan is β-2,6-linked polymeric fructose and serves as reserve carbohydrate in some plants and microorganisms. Mobilization of fructose is usually mediated by enzymes such as glycoside hydrolase (GH), typically releasing a monosaccharide as a product. The enzyme levan fructotransferase (LFTase) of the GH32 family catalyzes an intramolecular fructosyl transfer reaction and results in production of cyclic difructose dianhydride, thus exhibiting a novel substrate specificity. The mechanism by which LFTase carries out these functions via the structural fold conserved in the GH32 family is unknown. Here, we report the crystal structure of LFTase from Arthrobacter ureafaciens in apo form, as well as in complexes with sucrose and levanbiose, a difructosacchride with a β-2,6-glycosidic linkage. Despite the similarity of its two-domain structure to members of the GH32 family, LFTase contains an active site that accommodates a difructosaccharide using the -1 and -2 subsites. This feature is unique among GH32 proteins and is facilitated by small side chain residues in the loop region of a catalytic β-propeller N-domain, which is conserved in the LFTase family. An additional oligosaccharide-binding site was also characterized in the β-sandwich C-domain, supporting its role in carbohydrate recognition. Together with functional analysis, our data provide a molecular basis for the catalytic mechanism of LFTase and suggest functional variations from other GH32 family proteins, notwithstanding the conserved structural elements. 相似文献
15.
Intan Sakinah Mohd Anuar Suzianti Iskandar Vijaya 《Archives Of Phytopathology And Plant Protection》2013,46(13):1549-1556
Guava (Psidium guajava) fruit is vulnerable to postharvest diseases, such as anthracnose. In the present study, molecular characterisation and pathogenicity of Colletotrichum associated with antharcnose disease of guava fruit were conducted. From anthracnose lesion of guava, 20 isolates were successfully recovered. Based on colony colours, conidia, appressoria and presence or absence of setae, and ITS regions and ß-tubulin gene sequences, the isolates were identified as Colletotrichum gloeosporioides. Phylogenetic analysis based on combined data-sets using neighbour-joining method showed that C. gloeosporioides isolates did not group with C. gloeosporioides epitype strain, and thus the isolates were referred to as C. gloeosporioides species complex or C. gloeosporioides sensu lato. Pathogenicity tests using wounded treatment showed that C. gloeosporioides isolates from guava were pathogenic causing anthracnose on the fruits. The present study showed that C. gloeosporioides sensu lato is the most common species causing antharcnose disease of guava fruit. 相似文献
16.
Two Gram-positive, rod-shaped bacterial strains, H101(T) and H207, were isolated from deep sea water collected from South-West Indian Ocean. Phylogenetic analysis of 16S rRNA gene sequences showed that the two strains were closely related to one another (100% similarity), and had the closest relationship with Microbacterium hominis NBRC 15708(T) and Microbacterium insulae KCTC 19247(T) (98.2-98.3% similarities). DNA-DNA hybridization value between strains H101(T) and H207 was 87.2 ± 3.7%, and the values between the two strains and the closely related type strains were well below 70%. The two strains also shared a number of physiological and biochemical characteristics that were distinct from the closely related species, and grew at 2-37 ° C, pH 5-11 and 0-8% (w/v) NaCl. Both strains contained MK-12, MK-13 and MK-11 as the detected menaquinones. The peptidoglycan was of type B1γ with an interpeptide bridge D-Glu(Hyg)→ Gly(2)→ l-Lys. The major cellular fatty acids were anteiso-C(15:0), anteiso-C(17:0), and iso-C(16:0). Based on the genetic and phenotypic properties, it is proposed that strains H101(T) and H207 be classified as representatives of a novel species of the genus Microbacterium, with the name Microbacterium marinum sp. nov. The type strain is H101(T) (= CGMCC 4.6941(T) = DSM 24947(T)). 相似文献
17.
A novel gene slr2049 was identified in Synechococcus sp. PCC7002 by homologous alignment. The features and possible functions of slr2049 gene were predicted by bioinformatics analysis. The function of slr2049 was analyzed in vitro with a heterologous Escherichia coli system with plasmids conferring biosynthesis of phycocyanobilin (PCB) and of the acceptor proteins, β-phycocyanin (CpcB). The resulting products were evaluated with SDS-PAGE and absorption spectra. The function of slr2049 was further analyzed via site-directed mutations. Two mutants, slr2049 (W14L) and slr2049 (Y132S) were generated. The results showed that Slr2049 could catalyze the chromophorylation of CpcB. Compared to wild type, mutant Slr2049 (W14L) had red-shifted absorbance maxima and was not highly fluorescent as the wild-type. However, mutant Slr2049 (Y132S) was almost the same as the wild-type. In conclusion, our study suggests that we have cloned a novel gene and this gene may play an important role in attachment of the chromophores to the apo-proteins. 相似文献
18.
Kim CH Jang EK Kim SH Jang KH Kang SA Song KB Kwon OS Rhee SK 《Letters in applied microbiology》2005,40(3):228-234
AIMS: To clone and overexpress a novel levan fructotransferase gene lftA from Arthrobacter ureafaciens K2032. METHODS AND RESULTS: The lftA gene, encoding a levan fructotransferase (LFTase) of 521 amino acids (aa) residues, was cloned from the genomic DNA of A. ureafaciens K2032, and overexpressed in Escherichia coli. The recombinant LFTase overexpressed in E. coli was then used to produce a difructose dianhydride (DFA IV) from levan. DFA IV crystals with 97% purity could be obtained from the reaction mixture in 83.7% yield by using a natural crystallization method. CONCLUSIONS: The lftA gene cloned from A. ureafaciens K2032 encode a novel levan fructotransferase which produces difructose dianhydride (DFA IV) from levan. SIGNIFICANCE AND IMPACT OF THE STUDY: Levan fructotransferase is a useful enzyme with great promise in the production of DFA IV and various fructosides. 相似文献
19.
20.
Anandham R Tamura T Hamada M Weon HY Kim SJ Kim YS Suzuki K Kwon SW 《Journal of microbiology (Seoul, Korea)》2011,49(5):852-856
An actinomycete strain, designated M1T8B9T, was isolated from cow dung in Suwon, Republic of Korea. The isolate was a Gram-positive, nonmotile, and non-spore-forming
bacterium. Phylogenetic evaluation based on 16S rRNA gene sequence similarity showed that this isolate belongs to the genus
Microbacterium, with its closest neighbors being Microbacterium soli DCY17T (98.2%) and Microbacterium esteraromaticum DSM 8609T (98.0%). The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, and one unknown glycolipid. Strain
M1T8B9T contained the major fatty acids C15:0 anteiso, C16:0 iso, C
17:0 anteiso, and C15:0 iso, and the cell-wall peptidoglycan was of type B2β. According to DNA-DNA hybridization studies, strain M1T8B9T showed 42% and 26% relatedness with M. soli DCY17T and M. esteraromaticum DSM 8609T, respectively. On the basis of the data presented, strain M1T8B9T is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium suwonense sp. nov. is proposed. The type strain is M1T8B9T (=KACC 14058T =NBRC 106310T). 相似文献