首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
We report a new and improved pPZP vector (pPZP3425) for efficient plant transformation. This vector is derived from the widely used pPZP100 series of binary Agrobacterium vectors. One disadvantage of these vectors is the use of chloramphenicol resistance for selection in Escherichia coli and Agrobacteria. We have therefore included a kanamycin resistance gene for selection in Agrobacterium. Furthermore, the strong 35S CaMV promoter driving the plant resistance gene has been replaced by the weaker nos promoter because it has been shown that the 35S promoter driving the plant resistance marker can lead to ectopic expression of the transgene. During replacement of the 35S promoter, the NcoI site within the plant resistance gene has been removed, and NcoI can now be used for cloning purposes within the expression cassette which consists of an intron-containing gus gene driven by a strong constitutive promoter (35S promoter with doubled enhancer plus omega-element as translational enhancer). Thus, a single vector can conveniently be used for two purposes: (1) for overexpression of proteins by replacing the gus gene by the coding sequence of choice and (2) for creation of promoter:gus fusions by substituting the constitutive promoter by any other promoter. We demonstrate the usefulness of this vector for cloning a promoter:gus fusion and in planta transformation of Arabidopsis.  相似文献   

2.
Papaya (Carica papaya L.) production is affected by low temperatures that occur periodically in the subtropics. The C-repeat binding factor (CBF) gene family is known to induce the cold acclimation pathway in Arabidopsis thaliana. Embryogenic papaya cultures were induced from hypocotyls of “Sunrise Solo” zygotic embryos on semisolid induction medium. The CBF 1/CBF 3 genes along with the neomycin phosphotransferase (NPT II) gene were placed under the control of the CaMV 35 S promoter and introduced into a binary vector pGA 643. Embryogenic cultures were transformed with Agrobacterium strain GV 3101 harboring pGA 643. After selection of transformed embryogenic cultures for resistance to 300 mg l−1 kanamycin, somatic embryo development was initiated and transgenic plants were regenerated. The presence of the CBF transgenes in regenerated plants was confirmed by Southern blot hybridization. The papaya and the related cold-tolerant Vasconcella genomes were probed for the presence of cold inducible sequences using polymerase chain reaction (PCR). Possible cold inducible sequences were present in the Vasconcella genome but were absent in the Carica genome.  相似文献   

3.
Several lines of experimental analyses on the ploidy status of Azotobacter vinelandii genome lead to the conclusion that it contains more than 40 copies of its chromosome and therefore it is a polyploid organism. The genetic evidence argues against the existence of polyploidy in these cells since the segregation pattern of genetic markers under lack of selection pressure mimic that of haploids. However, when A. vinelandii was made Nif by inserting a kanamycin resistance marker gene in the nifDK sequence and the cells were selected for kanamycin resistance and Nif+ phenotype, we were able to score colonies that are both kanamycin resistant and Nif+. Therefore, when the cells were subjected to forced double selection of the same locus, they behaved as if they carried at least two chromosomes, one carrying the kanamycin resistance marker in the nifDK genes and the other carrying the intact nifDK genes. These analyses suggested that at least a diploidy status can be induced in these cells under selection pressure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Summary A translational fusion between the enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NPTH) genes was used to optimize parameters influencing Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless. The corresponding bifunctional protein produced from this EGFP/NPTH fusion gene allowed for a single promoter to drive expression of both green fluorescence and kanamycin resistance, thus conserving promoter resources and climinating potential promoter-promoter interactions. The fusion gene, driven by either a double cauliflower mosaic virus 35S (CaMV 35S) promoter or a double cassava vein mosaic virus (CsVMV) promoter, was immobilized into Agrobacterium strain EHA 105. Somatic embryos capable of direct secondary embryogenesis were used as target tissues to recover transgenic plants. Simultaneous visualization of GFP fluorescence and kanamycin selection of transgenic cells, tissues, somatic embryos, and plants were achieved. GFP expression and recovery of embryogenic culture lines were used as indicators to optimize transformation parameters. Preculturing of somatic embryos for 7 d on fresh medium prior to transformation minimized Agrobacterium-induced tissue browning/necrosis. Alternatively, browning/necrosis was reduced by adding 1 gl−1 of the antioxidant dithiothreitol (DTT) to post co-cultivation wash media. While combining preculture with antioxidant treatments did not result in a synergistic improvement in response, either treatment resulted in recovery of more stable embryogenic lines than did the control. A 48h co-cultivation period combined with 75 mgl−1 kanamycin in selection medium was optimal. DNA analysis confirmed stable integration of transgenes into the grape genome: 63% had single gene insertions, 27% had two inserts, and 7 and 3% had three and four inserts, respectively. Utilizing optimized procedures, over 1400 stable independent transgenic embryogenic culture lines were obtained, of which 795 developed into whole plants. Transgenic grapevines have exhibited normal vegetative morphology and stable transgene expression for over 5 yr.  相似文献   

5.
Summary Plant cells in photoheterotrophic culture respond to streptomycin by bleaching and retarded growth but no cell death. A new genetic marker for plant cell transformation has been developed that is based on the expression of the enzyme streptomycin phosphotransferase (SPT), and confers the ability to form green colonies on a selective medium. Coding sequences of SPT from the bacterial transposon Tn5 were placed under the control of gene expression signals derived from the Agrobacterium Ti plasmid Ach5. The 5 end of the SPT gene has been replaced with the promoter region of the gene coding for the first enzyme of agropine biosynthesis, the 3 end with that of the enzyme octopine synthase. The chimeric SPT gene has been linked to a selectable kanamycin resistance gene, and introduced into Nicotiana tabacum and Nicotiana plumbaginifolia by selection for the linked kanamycin resistance marker. Streptomycin resistance was expressed in some but not all of the kanamycin-resistant lines and was transmitted to the seed progeny as a dominant nuclear trait.  相似文献   

6.
We recently reported an 868-bp plastid DNA minicircle, NICE1, that formed during transformation in a transplastomic Nicotiana tabacum line. Shuttle plasmids containing NICEI sequences were maintained extrachromosomally in plastids and shown to undergo recombination with NICE1 sequences on the plastid genome. To prove the general utility of the shuttle plasmids, we tested whether plastid genes outside the NICE1 region could be rescued in Escherichia coli. The NICE1-based rescue plasmid, pNICER1, carries NICE1 sequences for maintenance in plastids, the CoIE1 ori for maintenance in E. coli and a spectinomcyin resistance gene (aadA) for selection in both systems. In addition, pNICERl carries a defective kanamycin resistance gene, kan*, to target the rescue of a functional kanamycin resistance gene, kan, from the recipient plastid genome. pNICERl was introduced into plastids where recombination could occur between the homologous kan/kan* sequences, and subsequently rescued in E. coli to recover the products of recombination. Based on the expression of kanamycin resistance in E. coli and the analysis of three restriction fragment polymorphisms, recombinant kan genes were recovered at a high frequency. Efficient rescue of kan from the plastid genome in E. coli indicates that NICE 1-based plasmids are suitable for rescuing mutations from any part of the plastid genome, expanding the repertoire of genetic tools available for plastid biology.  相似文献   

7.
Gu Q  Han N  Liu J  Zhu M 《Plant cell reports》2005,24(9):532-539
Vaccines produced by transgenic plants would have the potential to change the traditional means of production and inoculation of vaccines, and to reduce the cost of vaccine production. In the present study, an UreB antigen gene from a new Helicobacter pylori strain ZJC02 was cloned into the binary vector pBI121 which contains a CaMV35S promoter and a kanamycin resistance gene, and then transformed UreB into tobacco leaf-disc by Agrobacterium-mediated method. A total of 50 regenerated plants with kanamycin resistance were obtained in the selection media. The 35 putative transgenic individuals were tested and verified the presence and integration of the UreB into the nuclear genome of tobacco plants by PCR, PCR-southern, and Southern analyses. Expression of UreB gene in the tobacco plants was confirmed by RT-PCR and Western Blot analysis using polyclonal human antiserum. To our knowledge, this is the first report of the expression of Helicobacter pylori UreB antigen gene in a plant system, suggesting a major step in the production of plant-based vaccines for Helicobacter pylori.  相似文献   

8.
A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.  相似文献   

9.
A novel technique was developed which may be generally well suited to the site-specific construction of mutations in Enterobacter agglomerans. The method is based on the observation that E. agglomerans can be cured of a plasmid of the incompatibility group IncQ by cultivation on citrate-containing medium. To test the applicability of this technique, we inserted a kanamycin cassette into the cloned nifB gene, transferred it into E. agglomerans, and selected for recombinants in which the wild-type nifB was replaced by the mutated gene by growing transformants on citrate medium with kanamycin. The nifB mutants with the kanamycin cassette inserted in either orientation showed sequence of nifb. A typical 54-dependent promoter and a consensus NifA binding site were found upstream of nifB. Activation of this promoter by both heterologous and homologous NifA proteins was observed in vivo. The predicted amino acid sequence of the NifB protein showed strong similarity to the NifB sequences of other diazotrophic bacteria. The typical clustering of cysteine residues at the N-terminal end indicates its involvement in Fe-Mo cofactor biosynthesis.  相似文献   

10.
A protocol for Agrobacterium-mediated transformation with either kanamycin or mannose selection was developed for leaf explants of the cultivar Prunus dulcis cv. Ne Plus Ultra. Regenerating shoots were selected on medium containing 15 μM kanamycin (negative selection), while in the positive selection strategy, shoots were selected on 2.5 g/l mannose supplemented with 15 g/l sucrose. Transformation efficiencies based on PCR analysis of individual putative transformed shoots from independent lines relative to the initial numbers of leaf explants tested were 5.6% for kanamycin/nptII and 6.8% for mannose/pmi selection, respectively. Southern blot analysis on six randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene in each, and five randomly chosen lines identified to contain the pmi transgene by PCR showed positive hybridisation to a pmi DNA probe. The positive (mannose/pmi) and the negative (kanamycin) selection protocols used in this study have greatly improved transformation efficiency in almond, which were confirmed with PCR and Southern blot. This study also demonstrates that in almond the mannose/pmi selection protocol is appropriate and can result in higher transformation efficiencies over that of kanamycin/nptII selection protocols.  相似文献   

11.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

12.
M. Dutt  Z.T. Li  S.A. Dhekney  D.J. Gray   《Plant science》2008,175(3):423-430
A co-transformation system was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. ‘Thompson Seedless’ somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bi-directional dual promoter complex. Our technique included a short positive selection phase on medium containing 100 mg l−1 kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg l−1 5-fluorocytosine. We regenerated 25 stable EGFP expressing transgenic lines. PCR analysis confirmed 18 lines contained only the egfp gene, whereas the remaining contained both egfp and codA/nptII genes. Presumably, the 18 monogenic lines arose through cross protection by being in close proximity to cells that expressed nptII and thus detoxified kanamycin in the immediate vicinity. This is the first report for grapevine using a combination of positive and negative selection to produce transgenic plants that do not contain marker genes.  相似文献   

13.
A cell suspension culture was established from a transgenic petunia (Petunia hybrida L.) plant which carried genes encoding neomycin phosphotransferase II (nptII) and -glucuronidase (uidA, GUS). Two selection experiments were performed to obtain cell lines with increased resistance to kanamycin. In the first, two independently selected cell lines grown in the presence of 350 g/ml kanamycin were eight to ten-fold more resistant to kanamycin than unselected cells. Increased resistance was correlated with amplification of the nptII gene and an increase in nptII mRNA levels. Selection for kanamycin resistance also produced amplification of the linked GUS gene, resulting in increased GUS mRNA levels and enzyme activity. Selected cells grown in the absence of kanamycin for twelve growth cycles maintained increased copy numbers of both genes, and GUS enzyme activity was also stably overexpressed. In a second selection experiment, a cell line grown continuously in medium containing 100 g/ml kanamycin exhibited higher nptII and GUS gene copy numbers and an increase in GUS enzyme activity after eleven growth cycles. In this cell line, amplification of the two genes was accompanied by DNA rearrangement.  相似文献   

14.
An optimized complete protocol was developed forAgrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cultivar SR1), producing T1 flowering plants homozygous for the inserted T-DNA as verified by kanamycin resistance in T2 seedlings in 6 to 7 months from the time of cocultivation withAgrobacterium. Previous protocols require up to 9 to 12 months to obtain similar results. Procedures unique and important to this protocol include; a modified “whole-leaf” transformation coupled with a long duration of cocultivation, resulting in high rates of transformation, high levels of kanamycin in selection media resulting in few escapes, and extensive rooting of regenerants prior to a greenhouse hardening procedure. Once in the greenhouse, primary regenerants were maintained in small containers with long day photoperiod and high light levels, greatly shortening the time to seed set. Flowers from primary transformants were bagged to allow self pollination, and seed capsules harvested and dried prior to normal maturation on the plant. T1 and T2 seeds were plated and selected on kanamycin media by an improved seed plating technique which eliminates the need for the placement of individual seeds, saving time and improving selection homogeneity. Using this protocol, over 130 independent tobacco lines from six separate gene constructs have been generated in a very short time period. Of these 130, nearly 60 percent segregated 3∶1 for kanamycin resistance: susceptibility, indicating single transgene insertion events.  相似文献   

15.
耿天龙  李佛生  于敏  罗枫雪  唐琳  王胜华 《广西植物》2016,36(10):1238-1244
该研究以金发草愈伤组织为材料,通过分析比较不同抗生素种类(卡那霉素、潮霉素、头孢噻呋钠和氨苄青霉素)和浓度对金发草愈伤组织生长分化的影响,来确定适用于金发草遗传转化体系中的抗性筛选剂和抑菌剂。结果表明:(1)金发草愈伤组织对卡那霉素很敏感,且其分化率随着卡那霉素浓度的增加显著减少( P=0.01)。当卡那霉素浓度为10 mg·L-1时,金发草愈伤组织的生长分化受到明显抑制,且有大量的白化苗形成,但分化率仍有36.56%;当卡那霉素浓度为15 mg·L-1时,金发草愈伤组织的分化率为11.94%,只有很少部分的愈伤分化出绿色的丛生苗;当卡那霉素浓度为20 mg·L-1时,金发草愈伤组织基本褐化死亡,分化率仅为2.26%。因此,浓度为15 mg·L-1的卡那霉素适合作为金发草遗传转化体系中的抗性筛选剂。(2)金发草愈伤组织对潮霉素的敏感性要比卡那霉素弱,且潮霉素对金发草愈伤组织分化率的影响小,但毒害作用大。因此,潮霉素不适合作为金发草遗传转化体系中的抗性筛选剂。(3)300 mg·L-1的头孢霉素和氨苄青霉素对金发草愈伤组织生长分化影响很小且能有效抑制杂菌的生长,较高浓度的氨苄青霉素对金发草愈伤组织的抑制作用不太明显。因此,300 mg·L-1的头孢霉素和较高浓度的氨苄青霉素均可作为金发草遗传转化体系中的抑菌剂。该研究确定了适用于农杆菌介导的金发草遗传转化体系中的抗性筛选剂和抑菌剂,为金发草的遗传改良及功能性基因的研究奠定了基础。  相似文献   

16.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

17.
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.  相似文献   

18.
Summary In order to produce a triple mutant, sexual crosses between a chlorophyll-deficient, streptomycin-resistant mutant of Nicotiana tabacum (SA) and a kanamycin-resistant transformant of N. tabacum (KR.) were carried out. From the offspring of this cross, a triple mutant (KR-SA) was selected. In N. tabacum KR-SA, chlorophyll deficiency is due to recessive mutation in the nuclear genome, streptomycin resistance is due to a dominant mutation in the chloroplast genome, and kanamycin resistance is shown to be a dominant nuclear marker. Cell suspension protoplasts of N. tabacum KRSA were fused with callus protoplasts of Solanum melongena by dextran treatment. Somatic hybrid plants were selected for streptomycin resistance and the ability to produce clorophyll in regenerated plants. By using this selection system, green plants were recovered from two colonies. When these green plants were then tested for kanamycin resistance, all analyzed plants carried this trait. In addition, the hybrid nature of these plants was confirmed by investigation of the peroxidase isozyme. The present results show that the use of N. tabacum KR-SA in studies of somatic hybridization makes it possible to select somatic hybrid plants easily and provides information of the N. tabacum genome.Chemical Regulation of Biomechanism, The Institute of Physical and Chemical Research, Wako 351-01, Japan  相似文献   

19.
Summary A new procedure is described to recombine plasmid-bornelacZ fusions into the chromosome of gram-negative eubacteria in order to study promoter activity in monocopy. The procedure is based upon the insertion into the chromosome of a target bacterium of a recombinant transposon that carries DNA sequence homology to the regions flankinglacZ fusions present in multicopy promotor-probe vectors, which can be mobilized via RP4-mediated transfer but are unable to replicate in non-enteric bacteria. Double recombination between the promoter-probe vectors and the chromosomal homology region of the transposon is genetically selected by reconstruction and expression of wild-type sequences from truncatedlacZ andaadA (streptomycin/spectinomycin) resistance genes in the homology fragment and from an amber mutation carryinglacZ andaadA genes present in the plasmid vectors. The structure of desired clones is confirmed by screening for loss of the transposon-encoded kanamycin resistance marker. We have used this procedure to assemble in monocopy inPseudomonas putida the regulatory elements controlling expression of the Xy1S-activatedPm promoter of the TOL catabolic plasmid pWWO. We show here that thePm promoter undergoes a Xy1S-independent, strictly growth-phase-controlled activation by benzoate but not meta-toluate. In the presence of XylS, however, activation by both effectors involves a combination of growth phase-dependent and -independent controls.  相似文献   

20.
Summary Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号