首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medial preoptic nucleus is a sexually dimorphic structure whose cytoarchitecture, afferent and efferent connections, and functions have been previously described. No detailed ultrastructural study has, however, been perfomed to date. Here we describe the ultrastructural organization of this important preoptic structure of the male quail. Neuronal cell bodies of the medial preoptic nucleus generally show extensive development of protein-synthesis-related organelles (rough endoplasmic reticulum, polysomes), and of secretory structures (Golgi complexes, secretory vesicles, dense bodies). Previous morphometrical studies at the light-microscopical level have demonstrated the presence of a medial and a lateral neuronal population distinguished by the size of their cell bodies (the medial neurons are smaller than the lateral neurons). The present ultrastructural investigation confirms the difference in size, but no difference has been observed in the ultrastructural organization of the neurons. In both the medial and the lateral part, the nucleus is characterized by a large variety of cell bodies, including some that, on the basis of their ultrastructure, can be considered as putative peptidergic neurons. Close contacts are frequently observed between adjacent cell bodies that are normally arranged in clusters. Various types of synaptic endings are also present, suggesting a rich supply of nerve fibers. A few glial cells are scattered within the nucleus. In view of the crucial role of this region in regulating quail sexual behavior, the large heterogeneity of neurons and of afferent nervous fibers suggest that this region might have an important role in the integration of information arriving from different brain regions.  相似文献   

2.
The volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain is severalfold larger in males than in females. The volume of the SDN-POA can be influenced significantly by the hormonal milieu during the perinatal "critical period" of sexual differentiation of the brain. The purpose of the present study was to determine the onset of this period of sexual differentiation of the SDN-POA. Pregnant rats received no treatment or were injected subcutaneously with oil on day 17, 18, or 20, or testosterone (T;5 mg) on days 16-22 of gestation. On postnatal day 15, unilateral SDN-POA volumes from female offspring prenatally exposed to testosterone on day 16 or 17 were not different from values of control (untreated or oil-injected) offspring. Female offspring from mothers treated with testosterone on day 18, 19, or 20 of gestation showed a significant and similar increase in SDN-POA volume over values from control animals. SDN-POA volumes from female offspring exposed to testosterone on day 21 or 22, although larger than those of controls, were not different statistically. We conclude that with the specific paradigm used in this study SDN-POA development is insensitive prior to day 18 of gestation, the day on which the onset of the hormone-sensitive period occurs.  相似文献   

3.
We are using the domestic ram as an experimental model to examine the role of aromatase in the development of sexual partner preferences. This interest has arisen because of the observation that as many as 8% of domestic rams are sexually attracted to other rams (male-oriented) in contrast to the majority of rams that are attracted to estrous ewes (female-oriented). Our findings demonstrate that aromatase expression is enriched in a cluster of neurons in the medial preoptic nucleus called the ovine sexually dimorphic nucleus (oSDN). The size of the oSDN is associated with a ram's sexual partner preference, such that the nucleus is 2–3 times larger in rams that are attracted to females (female-oriented) than in rams that are attracted to other rams (male-oriented). Moreover, the volume of the oSDN in male-oriented rams is similar to the volume in ewes. These volume differences are not influenced by adult concentrations of serum testosterone. Instead, we found that the oSDN is already present in late gestation lamb fetuses (~day 135 of gestation) when it is ~2-fold greater in males than in females. Exposure of genetic female fetuses to exogenous testosterone during the critical period for sexual differentiation masculinizes oSDN volume and aromatase expression when examined subsequently on day 135. The demonstration that the oSDN is organized prenatally by testosterone exposure suggests that the brain of the male-oriented ram may be under-androgenized during development.  相似文献   

4.
5.
In male quail, like in other vertebrates including rodents, testosterone acting especially through its estrogenic metabolites is necessary for the activation of male sexual behavior. Also, the administration of dopamine agonists and antagonists profoundly influences male sexual behavior. How the steroid-sensitive neural network and dopamine interact physiologically, remains largely unknown. It is often implicitly assumed that testosterone or its metabolite estradiol, stimulates male sexual behavior via the modification of dopaminergic transmission. We have now identified in quail two possible ways in which dopamine could potentially affect sexual behavior by modulating the aromatization of testosterone into an estrogen. One is a long-acting mechanism that presumably involves the modification of dopaminergic transmission followed by the alteration of the genomic expression of aromatase. The other is a more rapid mechanism that does not appear to be dopamine receptor-mediated and may involve a direct interaction of dopamine with aromatase (possibly via substrate competition). We review here the experimental data supporting the existence of these controls of aromatase activity by dopamine and discuss the possible contribution of these controls to the activation of male sexual behavior.  相似文献   

6.
A sexually dimorphic male nucleus (MN) of the preoptic area/anterior hypothalamus (POA/AH), comprising large, estradiol-receptor containing neurons, is formed in male ferrets due to the action of estradiol, derived from the neural aromatization of circulating testosterone, during the last quarter of a 41-day gestation. Two experiments were conducted to compare the birthdates and the migration pattern of cells into the sexually dimorphic portion of the dorsomedial POA/AH as well as the nondimorphic ventral nucleus (VN) of the POA/AH of males and females. In experiment 1 the thymidine analog, bromodeoxyuridine (BrdU), was injected into the amniotic sacs of fetuses of different mothers between embryonic (E) days 18 and 30. Kits from all mothers were sacrificed on E38, and brains were processed to localize BrdU immunoreactivity (IR) for determining the birthdates of neurons in the POA/AH. Cells in the MN-POA/AH of males and in a comparable region of females were born between E22 and E28; cells in the nondimorphic VN-POA/AH of both sexes were born between these same ages. These results suggest that cells in the sexually dimorphic as well as the nondimorphic subdivision of the ferret POA/AH are born during the same embryonic period. This is well before the ages (E30–E41) when administering testosterone to females can stimulate, and blocking androgen aromatization in males can inhibit, MN-POA/AH differentiation. In experiment 2 BrdU was injected on E24, and kits from different litters were perfused on E30, E34, or E38. Brains were processed for BrdU-IR as well as glial fibrillary acidic protein (GFAP), which served as a marker for radial glial processes. The orientation of radial glial processes in fetal brains of both sexes suggested that cells migrate into the dorsomedial POA/AH from proliferative zones lining the lateral as well as the third ventricles. Quantitative, computer-assisted image analysis of BrdU-IR in groups of male and female brains supported this hypothesis. There were no significant sex differences in the distribution of BrdU-IR over the three ages studied, suggesting that formation of the MN-POA/AH in males cannot be attributed to an effect of estradiol on the migration of those cells born on E24 into this sexually dimorphic structure. Finally, total BrdU-IR did not change significantly in the POA/AH of male and female kits killed at E30, E34, or E38 while the area of the POA/AH increased more than 2.5-fold over this period, suggesting that few of the POA/AH cells born on E24 die during this period in either sex. In the absence of evidence that formation of the male ferret's MN-POA/AH depends on steroid-induced changes in neurogenesis, cell migration, or death, we suggest that the specification of a particular neuronal phenotype (e.g., large somal size; capacity to produce some undetermined neurotransmitter or neuropeptide) may be responsible. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The medial preoptic nucleus of the Japanese quail is a testosterone-sensitive structure that is involved in the control of male copulatory behavior. The full understanding of the role played by this nucleus in the control of reproduction requires the identification of its afferent and efferent connections. In order to identify neural circuits involved in the control of the medial preoptic nucleus, we used the lipophilic fluorescent tracer DiI implanted in aldheyde-fixed tissue. Different strategies of brain dissection and different implantation sites were used to establish and confirm afferent and efferent connections of the nucleus. Anterograde projections reached the tuberal hypothalamus, the area ventralis of Tsai, and the substantia grisea centralis. Dense networks of fluorescent fibers were also seen in several hypothalamic nuclei, such as the anterior medialis hypothalami, the paraventricularis magnocellularis, and the ventromedialis hypothalami. A major projection in the dorsal direction was also observed from the medial preoptic nucleus toward the nucleus septalis lateralis and medialis. Afferents to the nucleus were seen from all these regions. Implantation of DiI into the substantia grisea centralis also revealed massive bidirectional connections with a large number of more caudal mesencephalic and pontine structures. The substantia grisea centralis therefore appears to be an important center connecting anterior levels of the brain to brain-stem nuclei that may be involved in the control of male copulatory behavior.  相似文献   

8.
A sexually dimorphic male nucleus (MN) is present in Nissl-stained sections through the dorsal (d) preoptic area/anterior hypothalamus (POA/AH) of male ferrets. The MN-POA/AH is composed of a cluster of large cells which is organized in males by the action of estradiol, formed via the neural aromatization of circulating testosterone (T), during the last quarter of a 41-day gestation. Several recent studies using rodent species have raised the possibility that the hormone-induced masculinization of POA/AH morphology is mediated at least in part by a perinatal modulation of cell death. We asked whether a perinatal reduction in cell death contributes to the differentiation of the MN-POA/AH in the male ferret, which is a carnivore species. The appearance of internucleosomal DNA fragmentation, detected by in situ end labeling (ISEL) using the ApopTag™ kit (Oncor Corp.) and of pyknotic cell nuclei in Nissl-stained sections were used to estimate the occurrence of cell death. Male and female ferret kits were killed at four different ages spanning the perinatal period during which the MN-POA/AH is organized and assumes an adult phenotype. A peak density of dying cells was present in both sexes at postnatal day (P) 2, which is nearly 1 week after the age, embryonic day (E) 37, when the MN-POA/AH is first visible in male ferrets using Nissl stains. The density of cells in the sexually dimorphic dPOA/AH which were either ISEL-positive or pyknotic was similar in males and females on E34, as well as on P2, 10, and 20. In the nondimorphic ventral POA/AH, the highest density of dying cells was present in both sexes at E34, and there were significantly more ISEL-positive cells present in males than females at this particular age. In contrast to previous studies using rodents, our results suggest that in fetal male ferrets a modulation of the incidence of cell death contributes little to estradiol's organizational action in the dPOA/AH. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 242–252, 1998  相似文献   

9.
Testosterone and its metabolites masculinize the brain during a critical perinatal window, including the relative volume of sexually dimorphic brain areas such as the sexually dimorphic nucleus of the preoptic area (SDN), which is larger in males than females. Serotonin (5HT) may mediate this hormone action, since 5HT given during the second week of life decreases (i.e., feminizes) SDN volume in males and testosterone‐treated females. Although previous work indicates that the 5HT2A/2C receptor is sufficient to induce feminization, it is unclear whether other serotonin receptors are required and which subpopulation(s) of SDN cells are specifically organized by 5HT. Therefore, we injected male and female Sprague‐Dawley rat pups with saline, a nonselective 5HTR agonist, a 5HT2A/2C agonist, or a 5HT2A/2C antagonist over several timecourses in early life, and measured the Nissl‐SDN as well as a calbindin+ subdivision of the SDN, the CALB‐SDN. When examined on postnatal day 18 or early adulthood, the size of the Nissl‐SDN was feminized in males treated with any of the serotonergic drugs, eliminating the typical sex difference. In contrast, the sex difference in CALB‐SDN size was maintained regardless of serotoninergic drug treatment. This pattern suggests that although gonadal hormones shape the whole SDN, individual cellular phenotypes respond to different intermediary signals to become sexually dimorphic. Specifically, 5HT mediates sexual differentiation of non‐calbindin population(s) within the SDN. The results also caution against using measurement of the CALB‐SDN in isolation, as the absence of an effect on the CALB‐SDN does not preclude an effect on the overall nucleus. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1241–1253, 2016  相似文献   

10.
Oxytocin (OT) is a versatile neuropeptide that is involved in a variety of mammalian behaviors, and its role in reproductive function and behavior has been well established. The majority of pharmacological studies of the effects of OT on male sexual behavior have focused on the paraventricular nucleus (PVN), ventral tegmental area (VTA), hippocampus, and amygdala. Less attention has been given to the medial preoptic area (MPOA), a major integrative site for male sexual behavior. The present study investigated the effects of intra-MPOA administration of OT and (d(CH2)51, Tyr(Me)2, Thr4, Orn8, Tyr-NH29)-vasotocin, an OT antagonist (OTA), on copulation in the male rat. The relationship between OT receptor (OTR) binding levels in the MPOA and sexual efficiency was also explored. Microinjection of OT into the MPOA facilitated copulation in sexually experienced male rats, whereas similar injections of an OTA inhibited certain aspects of copulation but had no significant effect on locomotor activity in an open field. Contrary to expectation, sexually efficient males had lower levels of OTR binding in the rostral MPOA compared to inefficient animals. The present data suggest that OT activity in the MPOA is not necessary for the expression of male sexual behavior but is sufficient to facilitate copulatory behaviors and improve sexual efficiency in sexually experienced male rats. These data also suggest that OTR activity in the MPOA stimulates anogenital investigation, facilitates the initiation of copulation, and plays a role in the sensitization effect of the first ejaculation on subsequent ejaculations.  相似文献   

11.
12.
13.
In Xenopus laevis, the laryngeal motor nucleus (n. of cranial nerves IX‐X) is part of a sexually differentiated, androgen sensitive neuromuscular system devoted to vocalization. Adult males have more n. IX‐X neurons than females; however, during development of n. IX‐X, the rate of neurogenesis does not appear to differ between the sexes. In this study, we explored the role of naturally occurring cell death in the development of this nucleus and asked whether cell death might be involved in establishing the sex difference in neuron number. Counts of n. IX‐X neurons reveal that at tadpole stage 56, males and females have similar numbers of n. IX‐X neurons, but by stage 64 male neuron numbers are greater. This sex difference arises owing to a greater net loss of neurons in females—males lose ∼25% of their n. IX‐X neurons between stages 56 and 64, while females lose ∼47%. Sexual differentiation of n. IX‐X neuron number coincides with a period of developmental cell death, as evidenced by terminal transferase‐mediated dUTP nick‐end labeling and the presence of pyknotic nuclei in n. IX‐X. A role for gonadal hormones in controlling cell number was examined by treating tadpoles with exogenous androgen and determining the number of n. IX‐X neurons at stage 64. Dihydrotestosterone (DHT) treatment from the beginning of the cell death period (stage 54) until stage 64 had no effect on the number of n. IX‐X neurons in males but did significantly increase n. IX‐X neuron number in females. This increase was sufficient to abolish the sex difference normally observed at stage 64. Although DHT induced increases in female neuron number, it did not induce increases in cell proliferation or addition of newly born neurons to n. IX‐X. DHT may therefore have increased neuron number by protecting cells from death. We conclude that androgens can influence the survival of n. IX‐X neurons during a period of naturally occurring cell death, and that this action of androgen is critical to the development of sex differences in n. IX‐X neuron number. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 375–385, 1999  相似文献   

14.
Steroid hormones, particularly 17beta-estradiol (E2), regulate the development and expression of neural structures and sexual behavior. Recently, we demonstrated that E2-regulated responses are controlled by quantitative trait loci. In this study, we quantified 1) volume of the sexually dimorphic nucleus (SDN) of the preoptic area (POA); 2) medial basal hypothalamic (MBH)-POA aromatase and 5alpha-reductase enzyme activities during prenatal development and in adults; 3) serum LH, testosterone, FSH, E2, prolactin (PRL), and corticosterone levels; 4) reproductive organ (i.e., testis and ventral prostate) weights; and 5) male mating behavior in Noble (NB/Cr) and Wistar-Furth (WF/NCr) rat strains to determine the genetic influence on the measured parameters. Maximal phenotypic divergence in male SDN-POA volumes was seen between NB/Cr versus WF/NCr and BDIX/Cr rats (among nine rat strains initially examined), with the average SDN-POA volume of NB/Cr male rats being significantly greater ( approximately 30%) than that of either WF/NCr or BDIX/Cr males. Subsequent experiments investigated WF/NCr versus NB/Cr male rats in further detail. Significantly higher MBH-POA aromatase activity was seen in adult WF/NCr versus NB/Cr males, while MBH-POA 5alpha-reductase rates were not significantly different (within or between sex) for the two rat strains assayed. Serum LH levels were significantly higher (by greater than sixfold) in WF/NCr versus NB/Cr males, whereas testis organ:body weight and ventral prostate:body weight ratios in WF/NCr versus NB/Cr males were significantly smaller (by approximately 6-fold for testis and approximately 1.5-fold for prostate values). Serum FSH levels were significantly higher (by twofold) in WF/NCr versus NB/Cr males. However, serum testosterone levels were not significantly different, whereas E2 levels were approximately twofold higher (but not significantly different) in WF/NCr versus NB/Cr animals. No significant differences were found in basal (i.e., nonstress) serum PRL or corticosterone levels between the WF/NCr and NB/Cr males. In male copulatory tests, NB/Cr males exhibited significantly more aggressive sexual behavior (e.g., in mounting, intromission, and ejaculation parameters) compared with WF/NCr males. Taken together, these findings indicate that WF/NCr males are, in general, low responders, whereas NB/Cr males are high responders to hormonal signals. The obtained data suggest that the correlative, phenotypic variation in SDN-POA volume (i.e., structure) and reproductive hormone patterns and mating behavior (i.e., function) of WF/NCr versus NB/Cr males is regulated by potentially E2-mediated mechanisms that are genetically controlled.  相似文献   

15.
Intracranial implantation of minute pellets of gonadal steroids was performed to determine neuroanatomical loci at which steroids activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, systemic treatment of castrated males with either testosterone propionate (TP) or estradiol benzoate (EB) restores male-typical copulatory behavior (head grabbing, mounting, and cloacal contact movements). In addition, EB activates female-typical receptive behavior (crouching). Adult male castrated quail were implanted intracranially with 300-micrograms pellets containing TP, EB, or cholesterol (CHOL) and behavior was tested with intact males and females. Either TP or EB pellets in the preoptic area (POA) activated male-typical copulatory behavior. Mounting was specifically activated without concomitant activation of other steroid-sensitive sexual and courtship behaviors. TP and EB implants in adjacent nuclei containing receptors for these steroids and CHOL implants in POA had no effect on male-typical copulatory behavior. Eighteen percent of all males tested for female-typical receptivity crouched, but no specific effect of EB was seen at any site. The similarity of the POA sites for activation of mounting by TP and EB is consistent with the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to behavioral activation.  相似文献   

16.
Reproductive behavior is sexually differentiated in quail: The male-typical copulatory behavior is never observed in females even after treatment with high doses of testosterone (T). This sex difference in behavioral responsiveness to T is organized during the embryonic period by the exposure of female embryo to estrogens. We showed recently that the sexually dimorphic medial preoptic nucleus (POM), a structure that plays a key role in the activation of male copulatory behavior, is innervated by a dense steroid-sensitive network of vasotocin-immunoreactive (VT-ir) fibers in male quail. This innervation is almost completely absent in the female POM and is not induced by a chronic treatment with T, suggesting that this neurochemical difference could be organizational in nature. This idea was tested by injecting fertilized quail eggs of both sexes on day 9 of incubation with either estradiol benzoate (EB) (25 μg, a treatment that suppresses the capacity to show copulatory behavior in adulthood) or the aromatase inhibitor R76713 (10 μg, a treatment that makes adult females behaviorally responsive to T), or with the solvents as a control (C). At 3 weeks posthatch, all subjects were gonadectomized and later implanted with Silastic capsules filled with T. Two weeks later, all birds were perfused and brain sections were processed for VT immunocytochemistry. Despite the similarity of the adult endocrine conditions of the subjects (all were gonadectomized and treated with T Silastic implants providing the same plasma level of steroid to all subjects), major qualitative differences were observed in the density of VT-ir structures in the POM of the different groups. Dense immunoreactive structures (fibers and a few cells) were observed in the POM of C males but not females; EB males had completely lost this immunoreactivity (and lost the capacity to display copulatory behavior); and, conversely, R76713 females displayed a male-typical VT-ir system in the nucleus (and also high levels of copulatory behavior). Similar changes in immunoreactivity were seen in the nucleus of the stria terminalis and in the lateral septum (VT-ir fibers only in this case) but not in the magnocellular vasotocinergic system. These neurochemical changes closely parallel the effects of the embryonic treatments on male copulatory behavior. The vasotocinergic system of the POM can therefore be considered an accurate marker of the sexual differentiation of brain circuits mediating this behavior. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 684–699, 1998  相似文献   

17.
In Xenopus laevis, the laryngeal motor nucleus (n. of cranial nerves IX-X) is part of a sexually differentiated, androgen sensitive neuromuscular system devoted to vocalization. Adult males have more n. IX-X neurons than females; however, during development of n. IX-X, the rate of neurogenesis does not appear to differ between the sexes. In this study, we explored the role of naturally occurring cell death in the development of this nucleus and asked whether cell death might be involved in establishing the sex difference in neuron number. Counts of n. IX-X neurons reveal that at tadpole stage 56, males and females have similar numbers of n. IX-X neurons, but by stage 64 male neuron numbers are greater. This sex difference arises owing to a greater net loss of neurons in females-males lose approximately 25% of their n. IX-X neurons between stages 56 and 64, while females lose approximately 47%. Sexual differentiation of n. IX-X neuron number coincides with a period of developmental cell death, as evidenced by terminal transferase-mediated dUTP nick-end labeling and the presence of pyknotic nuclei in n. IX-X. A role for gonadal hormones in controlling cell number was examined by treating tadpoles with exogenous androgen and determining the number of n. IX-X neurons at stage 64. Dihydrotestosterone (DHT) treatment from the beginning of the cell death period (stage 54) until stage 64 had no effect on the number of n. IX-X neurons in males but did significantly increase n. IX-X neuron number in females. This increase was sufficient to abolish the sex difference normally observed at stage 64. Although DHT induced increases in female neuron number, it did not induce increases in cell proliferation or addition of newly born neurons to n. IX-X. DHT may therefore have increased neuron number by protecting cells from death. We conclude that androgens can influence the survival of n. IX-X neurons during a period of naturally occurring cell death, and that this action of androgen is critical to the development of sex differences in n. IX-X neuron number.  相似文献   

18.

Background

Malignant melanoma is the most deadly form of skin cancer. Female sex is known to have a protective effect on incidence, tumour characteristics, and mortality from melanoma. However, the potentially modifying effect of sex on the prognostic significance of clinicopathological and investigative factors is generally not taken into consideration in biomarker studies. In this study, we compared the sex-specific distribution and prognostic value of established tumour characteristics and Ki67 expression in 255 cases of incident primary melanoma in a prospective, population-based cohort study.

Methods

The study included 255 incident cases of melanoma, 132 females and 123 males, in the Malm? Diet and Cancer Study. Tumours from 226 (88.6%) cases had been assembled in tissue microarrays. Clinicopathological factors and immunohistochemical Ki67 expression were assessed and correlated with disease-free survival (DFS) and overall survival (OS) using Kaplan-Meier analysis, log rank test and univariable and multivariable Cox regression analyses, stratified for gender. Effect of gender on melanoma-specific survival (MSS) after first recurrence was also analysed.

Results

Women were significantly younger at diagnosis than men (p?=?0.012). The most common tumour sites were the legs in women (37.5%) and the dorsal trunk in men (37.8%). Kaplan-Meier analysis revealed that tumour location had no prognostic impact in women, but in men, location to the frontal trunk was significantly associated with a reduced DFS compared with all other locations combined and location to the dorsal trunk was significantly associated with a prolonged OS. High Ki67 expression was significantly associated with a reduced DFS and OS in men but not in women, also when adjusted for other factors. In men, but not in women, ulceration was an independent prognostic factor for both DFS and OS. MSS after first local, regional or distant recurrence was significantly shorter for men than for women.

Conclusions

The results from this study demonstrate that the prognostic value of tumour location, Ki67 expression and ulceration in melanoma differs according to gender. These findings need to be validated in future studies, as they may help improve prognostication in patients with melanoma. Moreover, our findings demonstrate that sex-stratified analyses add valuable information to biomarker studies.  相似文献   

19.
The effects of septal or preoptic lesions on both masculine and feminine sexual behaviors were examined in castrated adult male rats. Three weeks after brain surgery, animals were implanted with Silastic tubes containing testosterone (T) and observations of masculine sexual behavior were carried out four times every 5 days. T tubes were removed immediately after the end of the masculine behavioral tests. Two weeks later, animals implanted with Silastic tubes containing estradiol-17 beta(E2) were subjected to three feminine sexual behavioral tests at 5-day intervals. The bilateral lateral septal lesion (LSL) and the medial preoptic lesion (MPOL) effectively suppressed the performance of mounts, intromissions, and ejaculations, whereas the medial septal lesion (MSL), the dorsolateral preoptic lesion (DPOL), and the sham operation did not show any significant suppression of these behaviors. In the feminine sexual behavioral tests, intact and sham-operated control males showed only a low lordotic activity. However, the performance of the lordosis reflex was markedly facilitated by LSL or DPOL, while the lordotic activity of MSL and MPOL males was not significantly different from that of control males. These results suggest that the lateral septum exerts not only a facilitatory influence on masculine sexual behavior but also an inhibitory influence on feminine sexual behavior in male rats. On the other hand, the medial preoptic area may play a critical role in regulating masculine sexual behavior in male rats.  相似文献   

20.
The sexual and scent marking behaviors of male gerbils are stimulated by testosterone (T) action in the preoptic area (POA) of the hypothalamus. The sexually dimorphic area (SDA) in the posterior POA, which also responds to T, is implicated in this process. This research studied the sensitivities of mating, marking, and the SDA to T metabolites and other steroids. Experiment 1 focused on mating. Male gerbils were implanted at castration with 2-mm Silastic capsules containing T, dihydrotestosterone (DHT), 19-nortestosterone (19-nor T), estradiol (E), or no hormone and were tested 3-7 weeks later. T, E, and 19-nor T maintained intromissions, but E-treated males rarely ejaculated. Controls and DHT-treated males stopped mounting. Experiment 2 compared the ability of these steroids to reinstate marking and mating using the same dose and a larger one (5 mm). Androstenedione, 19-hydroxytestosterone (19-OHT), and E plus DHT were studied as well. Volumes of the SDA and SDA pars compacta (SDApc) were also measured. Only T, 19-nor T, E, and E + DHT reinstated sexual behavior, but all steroids except 19-OHT stimulated marking. E and DHT synergized to elicit mating. For marking, they were no more effective together than alone. Steroid-treated males had larger SDAs than controls. Moreover, steroids that stimulated sexual activity produced larger SDAs than steroids that did not. SDA size correlated with copulatory rate, but not with copulatory efficiency. SDApc size correlated with copulatory efficiency, but not with copulatory rate. Like copulatory rate and efficiency, sizes of the SDA and SDApc did not correlate with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号