首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY: WebBLAST is a suite of programs intended to assist in organizing sequencing data and to provide first-pass sequence analysis in an automated fashion. Data processing is fully automated, with end-users being presented both graphical and tabular summaries of data that can be viewed using any Web browser. AVAILABILITY: The program is free and available at http://genome.nhgri.nih. gov/webblast.  相似文献   

2.
GenBank.   总被引:2,自引:1,他引:2       下载免费PDF全文
The GenBank(R) sequence database (http://www.ncbi.nlm.nih.gov/) incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (WWW) or Sequin programs to send their sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez , which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE(R) abstracts from published articles describing the sequences are also included as an additional source of biological annotation. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, e-mail and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services of interest to biologists.  相似文献   

3.
GenBank.   总被引:2,自引:0,他引:2       下载免费PDF全文
The GenBank (Registered Trademark symbol) sequence database incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (Web) or Sequin programs to format and send sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE (Registered Trademark symbol) s from published articles describing the sequences are included as an additional source of biological annotation through the PubMed search system. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, Email, and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the URL: http://www.ncbi.nlm.nih.gov  相似文献   

4.
The Homeodomain Resource is a comprehensive collection of sequence, structure and genomic information on the homeodomain protein family. Available through the Resource are both full-length and domain-only sequence data, as well as X-ray and NMR structural data for proteins and protein-DNA complexes. Also available is information on human genetic diseases and disorders in which proteins from the homeodomain family play an important role; genomic information includes relevant gene symbols, cytogenetic map locations, and specific mutation data. Search engines are provided to allow users to easily query the component databases and assemble specialized data sets. The Homeodomain Resource is available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain  相似文献   

5.
The Homeodomain Resource is an annotated collection of non-redundant protein sequences, three-dimensional structures and genomic information for the homeodomain protein family. Release 2.0 contains 765 full-length homeodomain-containing sequences, 29 experimentally derived structures and 116 homeobox loci implicated in human genetic disorders. Entries are fully hyperlinked to facilitate easy retrieval of the original records from source databases. A simple search engine with a graphical user interface is provided to query the component databases and assemble customized data sets. A new feature for this release is the addition of more automated methods for database searching, maintenance and implementation of efficient data management. The Homeodomain Resource is freely available through the WWW at http://genome.nhgri.nih.gov/homeodomain  相似文献   

6.
GenBank   总被引:51,自引:4,他引:47       下载免费PDF全文
The GenBank((R))sequence database incorporates publicly available DNA sequences of >55 000 different organisms, primarily through direct submission of sequence data from individual laboratories and large-scale sequencing projects. Most submissions are made using the BankIt (Web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping and protein structure information, plus the biomedical literature via PubMed. Sequence similarity searching is provided by the BLAST family of programs. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. NCBI also offers a wide range of WWW retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the NCBI home page at http://www.ncbi.nlm.nih.gov  相似文献   

7.
The Histone Sequence Database is an annotated and searchable collection of all available histone and histone fold sequences and structures. Particular emphasis has been placed on documenting conflicts between similar sequence entries from a number of source databases, conflicts that are not necessarily documented in the source databases themselves. New additions to the database include compilations of post-translational modifications for each of the core and linker histones, as well as genomic information in the form of map loci for the human histone gene complement, with the genetic loci linked to Online Mendelian Inheritance in Man (OMIM). The database is freely accessible through the World Wide Web at either http://genome.nhgri.nih.gov/histones/ or http://www.ncbi.nlm.nih. gov/Baxevani/HISTONES  相似文献   

8.
The Homeodomain Resource is an annotated collection of non-redundant protein sequences, three-dimensional structures and genomic information for the homeodomain protein family. Release 3.0 contains 795 full-length homeodomain-containing sequences, 32 experimentally-derived structures and 143 homeo-box loci implicated in human genetic disorders. Entries are fully hyperlinked to facilitate easy retrieval of the original records from source databases. A simple search engine with a graphical user interface is provided to query the component databases and assemble customized data sets. A new feature for this release is the addition of DNA recognition sites for all human homeodomain proteins described in the literature. The Homeodomain Resource is freely available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain.  相似文献   

9.
GenBank          下载免费PDF全文
The GenBank sequence database incorporates publicly available DNA sequences of more than 105 000 different organisms, primarily through direct submission of sequence data from individual laboratories and large-scale sequencing projects. Most submissions are made using the BankIt (web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI’s integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical literature via PubMed. Sequence similarity searching is provided by the BLAST family of programs. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. NCBI also offers a wide range of World Wide Web retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the NCBI home page at http://www.ncbi.nlm.nih.gov.  相似文献   

10.
VarSifter is a graphical software tool for desktop computers that allows investigators of varying computational skills to easily and quickly sort, filter, and sift through sequence variation data. A variety of filters and a custom query framework allow filtering based on any combination of sample and annotation information. By simplifying visualization and analyses of exome-scale sequence variation data, this program will help bring the power and promise of massively-parallel DNA sequencing to a broader group of researchers. Availability and Implementation: VarSifter is written in Java, and is freely available in source and binary versions, along with a User Guide, at http://research.nhgri.nih.gov/software/VarSifter/.  相似文献   

11.
Histone Sequence Database: new histone fold family members.   总被引:2,自引:0,他引:2       下载免费PDF全文
Searches of the major public protein databases with core and linker chicken and human histone sequences have resulted in the compilation of an annotated set of histone protein sequences. In addition, new database searches with two distinct motif search algorithms have identified several members of the histone fold family, including human DRAP1 and yeast CSE4. Database resources include information on conflicts between similar sequence entries in different source databases, multiple sequence alignments, links to the Entrez integrated information retrieval system, structures for histone and histone fold proteins, and the ability to visualize structural data through Cn3D. The database currently contains >1000 protein sequences, which are searchable by protein type, accession number, organism name, or any other free text appearing in the definition line of the entry. All sequences and alignments in this database are available through the World Wide Web at http://www.nhgri.nih. gov/DIR/GTB/HISTONES or http://www.ncbi.nlm.nih. gov/Baxevani/HISTONES  相似文献   

12.
The Conserved Domain Database (CDD) is now indexed as a separate database within the Entrez system and linked to other Entrez databases such as MEDLINE(R). This allows users to search for domain types by name, for example, or to view the domain architecture of any protein in Entrez's sequence database. CDD can be accessed on the WorldWideWeb at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. Users may also employ the CD-Search service to identify conserved domains in new sequences, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search results, and pre-computed links from Entrez's protein database, are calculated using the RPS-BLAST algorithm and Position Specific Score Matrices (PSSMs) derived from CDD alignments. CD-Searches are also run by default for protein-protein queries submitted to BLAST(R) at http://www.ncbi.nlm.nih.gov/BLAST. CDD mirrors the publicly available domain alignment collections SMART and PFAM, and now also contains alignment models curated at NCBI. Structure information is used to identify the core substructure likely to be present in all family members, and to produce sequence alignments consistent with structure conservation. This alignment model allows NCBI curators to annotate 'columns' corresponding to functional sites conserved among family members.  相似文献   

13.
GenBank          下载免费PDF全文
GenBank (R) is a comprehensive sequence database that contains publicly available DNA sequences for more than 119 000 different organisms, obtained primarily through the submission of sequence data from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the BankIt (web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in the UK and the DNA Data Bank of Japan helps ensure worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI home page at: http://www.ncbi.nlm.nih.gov.  相似文献   

14.
BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences   总被引:49,自引:0,他引:49  
'BLAST 2 Sequences', a new BLAST-based tool for aligning two protein or nucleotide sequences, is described. While the standard BLAST program is widely used to search for homologous sequences in nucleotide and protein databases, one often needs to compare only two sequences that are already known to be homologous, coming from related species or, e.g. different isolates of the same virus. In such cases searching the entire database would be unnecessarily time-consuming. 'BLAST 2 Sequences' utilizes the BLAST algorithm for pairwise DNA-DNA or protein-protein sequence comparison. A World Wide Web version of the program can be used interactively at the NCBI WWW site (http://www.ncbi.nlm.nih.gov/gorf/bl2.++ +html). The resulting alignments are presented in both graphical and text form. The variants of the program for PC (Windows), Mac and several UNIX-based platforms can be downloaded from the NCBI FTP site (ftp://ncbi.nlm.nih.gov).  相似文献   

15.
The Homeodomain Resource is a searchable, curated collection of information for the homeodomain protein family. The resource is organized in a compact form and provides user-friendly interfaces for both querying the component databases and assembling customized datasets. The current release (version 5.0, October 2002) contains 1056 full-length homeodomain-containing sequences, 37 experimentally-derived structures, 81 homeodomain interactions, 84 homeodomain DNA-binding sites and 114 homeodomain proteins implicated in human genetic disorders. A new feature of this new release is the inclusion of experimentally-derived protein-protein interaction data for homeodomain family members. All entries are cross-linked for easy retrieval of the original records from source databases. The Homeodomain Resource is freely available through the World Wide Web at http://research.nhgri.nih.gov/homeodomain/.  相似文献   

16.
In this study, we have identified a novel mechanism of mutation involving translocation between the HPRT1 loci and other loci on the X chromosome. In HRT‐25's cDNA obtained from a patient with Lesch‐Nyhan syndrome, the upstream region of exon 3 was amplified, but the full‐length region was not amplified. The use of 3′ rapid amplification of cDNA ends polymerase chain reaction (3′RACE‐PCR) for HRT‐25 revealed part of intron 3 and an unknown sequence which have not identified the HPRT1 gene starting at the 3′ end of exon 3. We analyzed HPRT1 genomic DNA in order to confirm the mutation with the unknown sequence in the genomic DNA. Unknown sequence compared through BLAST analysis of human genome (NCBI; http://www.ncbi.nlm.nih.gov/BLAST/) showed that at least 0.5 to 0.6‐Mb telomeric to HPRT1 on chromosome Xq where located near LOC340581. This study provides the molecular basis for the involvement of genomic instability in germ cells.  相似文献   

17.
By searching the current protein sequence databases using sequences from human and chicken histones H1/H5, H2A, H2B, H3 and H4, a database of aligned histone protein sequences with statistically significant sequence similarity to the search sequence was constructed. In addition, a nucleotide sequence database of the corresponding coding regions for these proteins has been assembled. The region of each of the core histones containing the histone fold motif is identified in the protein alignments. The database contains >1300 protein and nucleotide sequences. All sequences and alignments in this database are available through the World Wide Web at http://www.ncbi.nlm.nih.gov/Baxevani/HISTO NES.  相似文献   

18.
19.
ABSTRACT: BACKGROUND: Local alignment programs often calculate the probability that a match occurred by chance. The calculation of this probability may require a "finite-size" correction to the lengths of the sequences, as an alignment that starts near the end of either sequence may run out of sequence before achieving a significant score. FINDINGS: We present an improved finite-size correction that considers the distribution of sequence lengths rather than simply the corresponding means. This approach improves sensitivity and avoids substituting an ad hoc length for short sequences that can underestimate the significance of a match. We use a test set derived from ASTRAL to show improved ROC scores, especially for shorter sequences. CONCLUSIONS: The new finite-size correction improves the calculation of probabilities for a local alignment. It is now used in the BLAST + package and at the NCBI BLAST web site (http://blast.ncbi.nlm.nih.gov).  相似文献   

20.

Background

BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i?+?1. Biegert and S?ding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.

Results

We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI??s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.

Conclusions

DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the ??Protein BLAST?? link at http://blast.ncbi.nlm.nih.gov.

Reviewers

This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号