首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (theta) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared theta and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1alpha intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, theta and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group.  相似文献   

2.
Contemporary DNA sequences can provide information about the historical demography of a species. However, different molecular markers are informative under different circumstances. In particular, mitochondrial (mt)DNA is uniparentally inherited and haploid in most vertebrates and thus has a smaller effective population size than diploid, biparentally inherited nuclear (n)DNA. Here, we review the characteristics of mtDNA and nDNA in the context of historical demography. In particular, we address how their contrasting rates of evolution and sex‐biased dispersal can lead to different demographic inferences. We do so in the context of an extensive review of the vertebrate literature that describes the use of mtDNA and nDNA sequence data in demographic reconstruction. We discuss the effects of coalescence, effective population size, substitution rates, and sex‐biased dispersal on informative timeframes and expected patterns of genetic differentiation. We argue that mtDNA variationin species with male‐biased dispersal can imply deviations from neutrality that do not reflect actual population expansion or selection. By contrast, mtDNA can be more informative when coalescence has occurred within the recent past, which appears to be the case with many vertebrates. We also compare the application and interpretation of demographic and neutrality test statistics in historical demography studies. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 367–386.  相似文献   

3.
The incomplete natural history of mitochondria   总被引:35,自引:0,他引:35  
Mitochondrial DNA (mtDNA) has been used to study molecular ecology and phylogeography for 25 years. Much important information has been gained in this way, but it is time to reflect on the biology of the mitochondrion itself and consider opportunities for evolutionary studies of the organelle itself and its ecology, biochemistry and physiology. This review has four sections. First, we review aspects of the natural history of mitochondria and their DNA to show that it is a unique molecule with specific characteristics that differ from nuclear DNA. We do not attempt to cover the plethora of differences between mitochondrial and nuclear DNA; rather we spotlight differences that can cause significant bias when inferring demographic properties of populations and/or the evolutionary history of species. We focus on recombination, effective population size and mutation rate. Second, we explore some of the difficulties in interpreting phylogeographical data from mtDNA data alone and suggest a broader use of multiple nuclear markers. We argue that mtDNA is not a sufficient marker for phylogeographical studies if the focus of the investigation is the species and not the organelle. We focus on the potential bias caused by introgression. Third, we show that it is not safe to assume a priori that mtDNA evolves as a strictly neutral marker because both direct and indirect selection influence mitochondria. We outline some of the statistical tests of neutrality that can, and should, be applied to mtDNA sequence data prior to making any global statements concerning the history of the organism. We conclude with a critical examination of the neglected biology of mitochondria and point out several surprising gaps in the state of our knowledge about this important organelle. Here we limelight mitochondrial ecology, sexually antagonistic selection, life-history evolution including ageing and disease, and the evolution of mitochondrial inheritance.  相似文献   

4.
Shoemaker DD  Dyer KA  Ahrens M  McAbee K  Jaenike J 《Genetics》2004,168(4):2049-2058
A substantial fraction of insects and other terrestrial arthropods are infected with parasitic, maternally transmitted endosymbiotic bacteria that manipulate host reproduction. In addition to imposing direct selection on the host to resist these effects, endosymbionts may also have indirect effects on the evolution of the mtDNA with which they are cotransmitted. Patterns of mtDNA diversity and evolution were examined in Drosophila recens, which is infected with the endosymbiont Wolbachia, and its uninfected sister species D. subquinaria. The level of mitochondrial, but not nuclear, DNA diversity is much lower in D. recens than in D. subquinaria, consistent with the hypothesized diversity-purging effects of an evolutionarily recent Wolbachia sweep. The d(N)/d(S) ratio in mtDNA is significantly greater in D. recens, suggesting that Muller's ratchet has brought about an increased rate of substitution of slightly deleterious mutations. The data also reveal elevated rates of synonymous substitutions in D. recens, suggesting that these sites may experience weak selection. These findings show that maternally transmitted endosymbionts can severely depress levels of mtDNA diversity within an infected host species, while accelerating the rate of divergence among mtDNA lineages in different species.  相似文献   

5.
Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and ‘abundance’ compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out.  相似文献   

6.
Molecular variation is often used to infer the demographic history of species, but sometimes the complexity of species history can make such inference difficult. The willow warbler, Phylloscopus trochilus, shows substantially less geographical variation than the chiffchaff, Phylloscopus collybita, both in morphology and in mitochondrial DNA (mtDNA) divergence. We therefore predicted that the willow warbler should harbour less nuclear DNA diversity than the chiffchaff. We analysed sequence data obtained from multiple samples of willow warblers and chiffchaffs for the mtDNA cytochrome b gene and four nuclear genes. We confirmed that the mtDNA diversity among willow warblers is low (pi = 0.0021). Sequence data from three nuclear genes (CHD-Z, AFLP-WW1 and MC1R) not linked to the mitochondria demonstrated unexpectedly high nucleotide diversity (pi values of 0.0172, 0.0141 and 0.0038) in the willow warbler, on average higher than the nucleotide diversity for the chiffchaff (pi values of 0.0025, 0.0017 and 0.0139). In willow warblers, Tajima's D analyses showed that the mtDNA diversity, but not the nuclear DNA diversity, has been reduced relative to the neutral expectation of molecular evolution, suggesting the action of a selective sweep affecting the maternally inherited genes. The large nuclear diversity seen within willow warblers is not compatible with processes of neutral evolution occurring in a population with a constant population size, unless the long-term effective population size has been very large (N(e) > 10(6)). We suggest that the contrasting patterns of genetic diversity in the willow warbler may reflect a more complex evolutionary history, possibly including historical demographic fluctuations or historical male-biased introgression of nuclear genes from a differentiated population of Phylloscopus warblers.  相似文献   

7.
Hart MW  Sunday J 《Biology letters》2007,3(5):509-512
The generality of operational species definitions is limited by problematic definitions of between-species divergence. A recent phylogenetic species concept based on a simple objective measure of statistically significant genetic differentiation uses between-species application of statistical parsimony networks that are typically used for population genetic analysis within species. Here we review recent phylogeographic studies and reanalyse several mtDNA barcoding studies using this method. We found that (i) alignments of DNA sequences typically fall apart into a separate subnetwork for each Linnean species (but with a higher rate of true positives for mtDNA data) and (ii) DNA sequences from single species typically stick together in a single haplotype network. Departures from these patterns are usually consistent with hybridization or cryptic species diversity.  相似文献   

8.
Vertically transmitted bacterial symbionts are common in arthropods. However, estimates of their incidence and diversity are based on studies that test for a single bacterial genus and often only include small samples of each host species. Focussing on ladybird beetles, we collected large samples from 21 species and tested them for four different bacterial symbionts. Over half the species were infected, and there were often multiple symbionts in the same population. In most cases, more females than males were infected, suggesting that the symbionts may be sex ratio distorters. Many of these infections would have been missed in previous studies as they only infect a small proportion of the population. Furthermore, 11 out of the 17 symbionts discovered by us were either in the genus Rickettsia or Spiroplasma, which are rarely sampled. Our results suggest that the true incidence and diversity of bacterial symbionts in insects may be far greater than previously thought.  相似文献   

9.
We compared patterns of mitochondrial restriction fragment length polymorphism (RFLP) diversity with patterns of nuclear RFLP diversity to investigate the effects of selection, gene flow, and sexual reproduction on the population genetic structure and evolutionary history of the wheat pathogen Phaeosphaeria nodorum. A total of 315 fungal isolates from Texas, Oregon, and Switzerland were analyzed using seven nuclear RFLP probes that hybridized to discrete loci and purified mitochondrial DNA that hybridized to the entire mtDNA genome. Forty-two different mitochondrial haplotypes and 298 different nuclear haplotypes were detected. The two most frequent mtDNA haplotypes were present in every population and represented 32% of all isolates. High levels of gene flow, low levels of population subdivision, no evidence for either host specificity or cyto-nuclear disequilibrium were inferred from the analysis of both genomes. The concordance in estimates of these population genetic parameters from both genomes suggests that the two genomes experienced similar degrees of migration, genetic drift and selection.  相似文献   

10.
The neotropical Drosophila paulistorum superspecies, consisting of at least six geographically overlapping but reproductively isolated semispecies, has been the object of extensive research since at least 1955, when it was initially trapped mid-evolution in flagrant statu nascendi. In this classic system females express strong premating isolation patterns against mates belonging to any other semispecies, and yet uncharacterized microbial reproductive tract symbionts were described triggering hybrid inviability and male sterility. Based on theoretical models and limited experimental data, prime candidates fostering symbiont-driven speciation in arthropods are intracellular bacteria belonging to the genus Wolbachia. They are maternally inherited symbionts of many arthropods capable of manipulating host reproductive biology for their own benefits. However, it is an ongoing debate as to whether or not reproductive symbionts are capable of driving host speciation in nature and if so, to what extent. Here we have reevaluated this classic case of infectious speciation by means of present day molecular approaches and artificial symbiont depletion experiments. We have isolated the α-proteobacteria Wolbachia as the maternally transmitted core endosymbionts of all D. paulistorum semispecies that have coevolved towards obligate mutualism with their respective native hosts. In hybrids, however, these mutualists transform into pathogens by overreplication causing embryonic inviability and male sterility. We show that experimental reduction in native Wolbachia titer causes alterations in sex ratio, fecundity, and mate discrimination. Our results indicate that formerly designated Mycoplasma-like organisms are most likely Wolbachia that have evolved by becoming essential mutualistic symbionts in their respective natural hosts; they have the potential to trigger pre- and postmating isolation. Furthermore, in light of our new findings, we revisit the concept of infectious speciation and discuss potential mechanisms that can restrict or promote symbiont-induced speciation at post- and prezygotic levels in nature and under artificial laboratory conditions.  相似文献   

11.
Effects of Wolbachia on mtDNA variation in two fire ant species   总被引:1,自引:0,他引:1  
Wolbachia are endosymbiotic bacteria that infect arthropods. As they are maternally transmitted, the spread of Wolbachia variants within host populations may affect host mtDNA evolution. We sequenced a portion of the mitochondrial cytochrome oxidase I gene from numerous individuals of two Wolbachia-infected fire ant species, Solenopsis invicta and S. richteri, to determine how these bacteria influence patterns of mtDNA variation. As predicted, there was a strong association between Wolbachia strain and host mtDNA lineage within and between these fire ant species. However, there was no consistent association between the presence of Wolbachia and a reduction in mtDNA diversity. Moreover, patterns of mtDNA variation within Wolbachia-infected populations did not differ consistently from neutral expectations, despite our prediction that strong positive selection acting on Wolbachia influences the evolutionary dynamics of other cytoplasmic genomes. Specifically, while values of Tajima's D consistently were less than zero for all six samples of fire ants harbouring Wolbachia, MacDonald-Kreitman tests suggested that the patterns of variation were different from those expected under neutrality in only two of the samples. We conclude that these neutrality tests do not unambiguously reveal a clear effect of Wolbachia infection on patterns of mtDNA variation and substitution in fire ants. Finally, consistent with an earlier study, our data revealed the presence of two divergent mtDNA haplotype lineages and Wolbachia strains within S. invicta. Recognition of these two lineages has important consequences for interpreting patterns of mtDNA evolution and genetic differentiation between conspecific social forms of this species.  相似文献   

12.
Well-studied model systems present ideal opportunities to understand the relative roles of contemporary selection versus historical processes in determining population differentiation and speciation. Although guppy populations in Trinidad have been a model for studies of evolutionary ecology and sexual selection for more than 50 years, this work has been conducted with little understanding of the phylogenetic history of this species. We used variation in nuclear (X-src) and mitochondrial DNA (mtDNA) sequences to examine the phylogeographic history of Poecilia reticulata Peters (the guppy) across its entire natural range, and to test whether patterns of morphological divergence are a consequence of parallel evolution. Phylogenetic, nested clade, population genetic, and demographic analyses were conducted to investigate patterns of genetic structure at several temporal scales and are discussed in relation to vicariant events, such as tectonic activity and glacial cycles, shaping northeast South American river drainages. The mtDNA phylogeny defined five major lineages, each associated with one or more river drainages, and analysis of molecular variance also detected geographic structuring among these river drainages in an evolutionarily conserved nuclear (X-src) locus. Nested clade and other demographic analyses suggest that the eastern Venezuela/ western Trinidad region is likely the center of origin of P. reticulata. Mantel tests show that the divergence of morphological characters, known to differentiate on a local scale in response to natural and sexual selection pressures, is not associated with mtDNA genetic distance; however, TreeScan analysis identified several significant associations of these characters with the haplotype tree. Parallel upstream/downstream patterns of morphological adaptation in response to selection pressures reported in P. reticulata within Trinidad rivers appears to persist across the natural range. Our results together with previous studies suggest that, although morphological variation in P. reticulata is primarily attributed to selection, phylogeographic history may also play a role.  相似文献   

13.
Strong purifying selection in transmission of mammalian mitochondrial DNA   总被引:5,自引:3,他引:2  
There is an intense debate concerning whether selection or demographics has been most important in shaping the sequence variation observed in modern human mitochondrial DNA (mtDNA). Purifying selection is thought to be important in shaping mtDNA sequence evolution, but the strength of this selection has been debated, mainly due to the threshold effect of pathogenic mtDNA mutations and an observed excess of new mtDNA mutations in human population data. We experimentally addressed this issue by studying the maternal transmission of random mtDNA mutations in mtDNA mutator mice expressing a proofreading-deficient mitochondrial DNA polymerase. We report a rapid and strong elimination of nonsynonymous changes in protein-coding genes; the hallmark of purifying selection. There are striking similarities between the mutational patterns in our experimental mouse system and human mtDNA polymorphisms. These data show strong purifying selection against mutations within mtDNA protein-coding genes. To our knowledge, our study presents the first direct experimental observations of the fate of random mtDNA mutations in the mammalian germ line and demonstrates the importance of purifying selection in shaping mitochondrial sequence diversity.  相似文献   

14.
Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally‐transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean‐specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species.  相似文献   

15.
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analysed data from the Steller's sea lion, Eumetiopias jubatus , where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei's gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.  相似文献   

16.
Monitoring levels of genetic diversity in wildlife species is important for understanding population status and trajectory. Knowledge of the distribution and level of genetic diversity in a population is essential to inform conservation management, and help alleviate detrimental genetic impacts associated with recent population bottlenecking. Mitochondrial DNA (mtDNA) markers such as the control region have become a common means of surveying for within-population genetic diversity and detecting signatures of recent population decline. Nevertheless, little attention has been given to examining the mtDNA control region’s sensitivity and performance at detecting instances of population decline. We review genetic studies of bird populations published since 1993 that have used the mtDNA control region and reported haplotype diversity, number of haplotypes and nucleotide diversity as measures of within-population variability. We examined the extent to which these measures reflect differences in known demographic parameters such as current population size, severity of any recent bottleneck and IUCN Red List status. Overall, significant relationships were observed between two measures of genetic diversity (haplotype diversity and the number of haplotypes), and population size across a number of comparisons. Both measures gave a more accurate reflection of recent population history in comparison to nucleotide diversity, for which no significant associations were found. Importantly, levels of diversity only correlated with demographic declines where population sizes were known to have fallen below 500 individuals. This finding suggests that measures of mtDNA control region diversity should be used with a degree of caution when inferring demographic history, particularly bottleneck events at population sizes above N = 500.  相似文献   

17.
Neoceratodus forsteri: is a freshwater species of Dipnoan currently listed as ‘vulnerable to extinction’ under Australian legislation. The species is restricted to at least two indigenous riverine populations in southeastern Queensland, and several other putatively translocated populations. Current understanding of genetic relationships among populations is based on studies of allozymes, microsatellites and mitochondrial DNA (mtDNA) fragments. A notable feature of all these datasets was low genetic variability. Here we sequence the complete mitogenome of 71 N. forsteri individuals from five populations to improve resolution of mtDNA diversity, examine relationships among populations, and evaluate recent demographic history. We recorded 137 variable positions forming 41 haplotypes in the 16,573 bp mitogenome alignment. Strong genetic structure was observed among riverine samples (global ΦST?=?0.342) in a pattern consistent with translocation history. Tinana Creek was confirmed as an isolated and genetically unique subpopulation that should be recognized as a distinct management unit. Two previously unreported mtDNA clades (0.46% mean divergence) were found and suggest that genetic exchange among coastal catchments may have been facilitated by riverine connections on the exposed continental shelf during the late Pleistocene. Extended Bayesian skyline analysis showed no evidence for recent historical change in female effective population size, and codon-based selection tests found no evidence for positive selection in coding genes. Overall, our results emphasise the utility of the full mtDNA molecule for capturing population structure in taxa with low genetic diversity. In such cases, informative variation may be scattered across disparate parts of the mitogenome. Surveying relatively short fragments of mtDNA may lead to significant underestimates of population structure when applied to threatened species with low genetic diversity.  相似文献   

18.
Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often‐unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.  相似文献   

19.
Frankham R 《Heredity》2012,108(3):167-178
Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.  相似文献   

20.
We analysed the historical genetic diversity of human populations in Europe at the mtDNA control region for 48 ancient Britons who lived between ca AD 300 and 1000, and compared these with 6320 modern mtDNA genotypes from England and across Europe and the Middle East. We found that the historical sample shows greater genetic diversity than for modern England and other modern populations, indicating the loss of diversity over the last millennium. The pattern of haplotypic diversity was clearly European in the ancient sample, representing each of the modern haplogroups. There was also increased representation of one of the ancient haplotypes in modern populations. We consider these results in the context of possible selection or stochastic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号