首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human–wildlife conflicts create collateral damage when people attempt to control one problematic species and inadvertently kill others. I observed a collateral damage problem in southern Costa where people seeking to control common vampire bats (Desmodus rotundus) indiscriminately killed sympatric, non‐target bat species (e.g., by baiting bats with poisoned bananas). To learn about this phenomenon and its causes, I developed and implemented a questionnaire based on the theory of planned behavior. In a sample of 504 men, 14 percent had individually killed 1–115 bats within the past 5 yr, 68 percent had killed bats as children, and 27 percent said that they would kill bats that they found roosting on their farms, even if they could not identify the species. Men who intended to indiscriminately kill bats thought that it would reduce disease transmission to livestock, whereas men who did not intend to kill bats thought that killing bats would reduce ecosystem functioning and/or damage nature. Ultimately, men were more likely to intend to indiscriminately kill bats if they knew less about bat natural history and/or had previously suffered vampire bats attacking their livestock. Men knew more about bat natural history and were less likely to harbor indiscriminate bat‐killing intentions if they had experienced some form of environmental education. My results suggest that environmental education will be most effective for bat conservation when combined with farmer support to ameliorate perceived livelihood risks associated with vampire bats.  相似文献   

2.
In addition to several emerging viruses, bats have been reported to host multiple bacteria but their zoonotic threats remain poorly understood, especially in Africa where the diversity of bats is important. Here, we investigated the presence and diversity of Bartonella and Rickettsia spp. in bats and their ectoparasites (Diptera and Siphonaptera) collected across South Africa and Swaziland. We collected 384 blood samples and 14 ectoparasites across 29 different bat species and found positive samples in four insectivorous and two frugivorous bat species, as well as their Nycteribiidae flies. Phylogenetic analyses revealed diverse Bartonella genotypes and one main group of Rickettsia, distinct from those previously reported in bats and their ectoparasites, and for some closely related to human pathogens. Our results suggest a differential pattern of host specificity depending on bat species. Bartonella spp. identified in bat flies and blood were identical supporting that bat flies may serve as vectors. Our results represent the first report of bat-borne Bartonella and Rickettsia spp. in these countries and highlight the potential role of bats as reservoirs of human bacterial pathogens.  相似文献   

3.
Coronaviruses can infect a variety of animals including poultry, livestock, and humans and are currently classified into three groups. The interspecies transmissions of coronaviruses between different hosts form a complex ecosystem of which little is known. The outbreak of severe acute respiratory syndrome (SARS) and the recent identification of new coronaviruses have highlighted the necessity for further investigation of coronavirus ecology, in particular the role of bats and other wild animals. In this study, we sampled bat populations in 15 provinces of China and reveal that approximately 6.5% of the bats, from diverse species distributed throughout the region, harbor coronaviruses. Full genomes of four coronavirues from bats were sequenced and analyzed. Phylogenetic analyses of the spike, envelope, membrane, and nucleoprotein structural proteins and the two conserved replicase domains, putative RNA-dependent RNA polymerase and RNA helicase, revealed that bat coronaviruses cluster in three different groups: group 1, another group that includes all SARS and SARS-like coronaviruses (putative group 4), and an independent bat coronavirus group (putative group 5). Further genetic analyses showed that different species of bats maintain coronaviruses from different groups and that a single bat species from different geographic locations supports similar coronaviruses. Thus, the findings of this study suggest that bats may play an integral role in the ecology and evolution of coronaviruses.  相似文献   

4.
Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland‐dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free‐standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed‐effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White‐striped free‐tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland‐dependent and nocturnal fauna.  相似文献   

5.
The Cerrado is considered one of the 25 biodiversity hotspots in the world by conservation organizations. There are few studies on bat taxonomic groups for this biome. Herein we present a bat survey employing mist nets in the protected area of a private natural heritage reserve Reserva Particular do Patrimônio Natural Pousada das Araras, located in the west-central Brazil. We investigate the hypothesis that the Cerrado habitat complexity plays a role on the different structuring forces in bat ecological communities. Bats represent a diversity of trophic levels, and they occupy a wide range of available Cerrado habitats and microhabitats. The patterns and processes we discuss represent the factors influencing coexisting species of bats in different habitats and their implications for conservation. We captured 758 individuals of 25 species belonging to four families. Phyllostomidae was the dominant family, represented by 20 species (80%). The average recapture rate was 6.2%, and the species with most proportional recapture was A. caudifer. Greater species richness was observed among bats with predominantly insectivore habits, followed by frugivores. Glossophaga soricina was a dominant species, with about 30% of the captures. There was seasonal variation relating to the number of bats captured, with greater bat frequency occurring during the wet season, although some species occurred at higher rates during the dry season, such as C. perspicillata and S. lilium. Sanguivore bats were abundant, reflecting the availability of shelters and food supply (livestock) in the surrounding area. Compared to other surveyed areas, Pousada das Araras may be considered of high species diversity, supplanting the majority of known Cerrado studied areas. Apparently Cerrado favours the occurrence of insectivore species, with emphasis on the foliage-gleaning insectivores belong to the subfamily Phyllostominae. This study indicates that apparently the conservation of the Cerrado savanna fragments can support a considerable diversity of bat species.  相似文献   

6.
The common vampire bat (Desmodus rotundus) is one of three haematophagous species of bats and the only species in this genus. These New World bats prey on mammals and create significant economic impacts through transmission of rabies in areas where livestock are prevalent. Furthermore, in some portions of their range, it is not uncommon for them to prey upon humans. It is critical to the management of this species and for understanding the spread of bat rabies that detailed studies of D. rotundus population structure be conducted. To further such studies, we have characterized 12 microsatellite loci for this species.  相似文献   

7.

Background  

The common vampire bat Desmodus rotundus is one of three bat species that feed exclusively on the blood of mammals often more than 1000 times its size. Vampire bats even feed on human blood. Moreover, they tend to feed on the same individual over consecutive nights.  相似文献   

8.
There is a serious concern that white‐nose syndrome (WNS), a fungal disease causing severe population declines in North American bats, could soon threaten bats on the Australian continent. Despite an ‘almost certain' risk of incursion within the next ten years, and high virulence in naïve bat populations, we remain uncertain about the vulnerability of Australian bats to WNS. In this study, we intersected occurrences for the 27 cave roosting bat species in Australia with interpolated data on mean annual surface temperature, which provides a proxy for thermal conditions within a cave and hence its suitability for growth by the fungal pathogen Pseudogymnoascus destructans. Our analysis identifies favourable roost thermal conditions within 30–100% of the ranges of eight bat species across south‐eastern Australia, including for seven species already listed as threatened with extinction. These results demonstrate the potential for widespread exposure to P. destructans and suggest that WNS could pose a serious risk to the conservation of Australia's bat fauna. The impacts of exposure to P. destructans will depend, however, on the sensitivity of bats to developing WNS, and a more comprehensive vulnerability assessment is currently prevented by a lack of information on the hibernation biology of Australian bats. Thus, given the clear potential for widespread exposure of Australia's bats to P. destructans demonstrated by our study, two specific policy actions seem justified: (i) urgent implementation of border controls that identify and decontaminate cave‐associated fomites and (ii) dedicated funding to enable research on key aspects of bat winter behaviour and hibernation physiology. Further, as accidental translocation of this fungus could also pose a risk to other naïve bat faunas in cooler regions of southern Africa and South America, we argue that a proactive, globally coordinated approach is required to understand and mitigate the potential impacts of WNS spreading to Southern Hemisphere bats.  相似文献   

9.
Land conversion and modification threatens many wildlife and plant species in the northern Great Plains, including bats. Our objective was to assess the association of bat species with landscape features in the northern Great Plains of North Dakota, USA, taking the first step towards understanding the habitat needs of bats in this region. We examined patterns of bat activity across different landscapes, identified those landscape features associated with high levels of bat activity, and determined which specific land features (i.e., vegetation and water types) were most commonly associated with each bat species. We used passive acoustic monitoring to measure bat activity at sites across North Dakota, and assessed detailed land characteristics at each site. We used nonmetric multidimensional scaling and multivariate regression tree analysis to examine relationships between bat activity and landscape variables. Bat foraging activity was influenced by structural landscape characteristics and the availability of specific water resources. High levels of bat activity were associated with riparian forested areas of varying structural complexity, ponds, and, to a lesser extent, open riparian lands. Individual bat species were influenced by land type and water resources differently. We identified big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus) as indicators of open riparian and pond landscapes, respectively. These results highlight the importance of prairie riparian landscapes and maintaining heterogeneity across the landscape for conservation and management of bat communities. Further, we identified ponds as an important landscape feature for little brown bats, a species of conservation concern, indicating that this specific feature should be a focus of conservation efforts on prairie wetlands. © 2019 The Wildlife Society.  相似文献   

10.
Effectiveness of an acoustic lure for surveying bats in British woodlands   总被引:2,自引:0,他引:2  
1. A field experiment was used to test the effectiveness of a synthesized bat call as an acoustic lure to attract bats into mist nets in woodlands in southeast England. The stimulus was modelled on a social call of the rare Bechstein's bat Myotis bechsteinii. 2. In the Test condition, when the synthesized call was played, 23 bats of four species were captured, including six Bechstein's bats. In the Control condition, when no calls were played, only one bat was caught. 3. The bat call synthesizer is an effective tool for increasing capture rates for bats. Used as part of a systematic survey programme, it has the potential to provide the first baseline data on the distribution of bats in British woodlands.  相似文献   

11.
12.
Abstract: We compared bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 m) in each habitat type. Variation in vegetative clutter among sampling heights and among habitat types allowed us to examine the differential effect of forest vegetation on the spatial activity patterns of clutter-adapted and open-adapted bat species. Moreover, monitoring activity at 30, 10, and 2 m permitted us to also compare bat activity above and below the forest canopy. We detected calls of 5 species or species groups: eastern red/Seminole bats (Lasiurus borealis/L. seminolus), eastern pipistrelles (Pipistrellus subflavus), evening bats (Nycticeius humeralis), big brown bats (Eptesicus fuscus), and hoary bats (Lasiurus cinerius). At 2 and 10 m, bat activity was concentrated in riparian areas, whereas we detected relatively low levels of bat activity in upland habitats at those heights. Activity was more evenly distributed across the landscape at 30 m. Bat activity levels above the forest canopy were almost 3 times greater than within or below the canopy. We detected significantly greater activity levels of 2 open-adapted species (hoary and big brown bats) above rather than within or below the forest canopy. However, activity levels of 2 clutter-adapted species (eastern red/Seminole bats and eastern pipistrelles) did not differ above, within, or below the forest canopy. Despite classification as a clutter-adapted species, evening bat activity was greater above rather than within or below the forest canopy. We believe our results highlight the importance of riparian areas as foraging habitat for bats in pine-dominated landscapes in the southeastern United States. Although acoustical surveys conducted below forest canopies can provide useful information about species composition and relative activity levels of bats that forage in cluttered environments, our results showing activity above canopy suggest that such data may not accurately reflect relative activity of bats adapted to forage in more open conditions, and therefore may provide an inaccurate picture of bat community assemblage and foraging habitat use.  相似文献   

13.
Bat boxes are often installed as substitute habitats to offset the loss of large, hollow-bearing trees. However, emerging evidence suggests that they are failing to achieve intended conservation outcomes as they only support generalist species. Despite these concerns, the effect of bat boxes on the dynamics of bat communities remains understudied. We assessed the bat community in reserves where bat boxes had been installed in comparison with reserves where they had not using ultrasonic surveys in 16 small bushland reserves throughout Sydney, Australia. Reserves containing bat boxes and those without had comparable species diversity and composition; however, the activity of the dominant species, Gould's wattled bat (Chalinolobus gouldii), was significantly higher at sites with bat boxes. Species that commonly forage in open vegetation, including C. gouldii, were significantly positively associated with sites that had bat boxes. Occupation of boxes by bats was not recorded in the study due to limited information on their locations, so further research is required to understand the direct effects of boxes and the bats that occupy them on the bat community. If bat boxes continue to be recommended as a biodiversity offset, a greater understanding of the potential impact they have on altered competitive relationships and community dynamics is essential.  相似文献   

14.
In Neotropical regions, fruit bats are among the most important components of the remaining fauna in disturbed landscapes. These relatively small-bodied bats are well-known dispersal agents for many small-seeded plant species, but are assumed to play a negligible role in the dispersal of large-seeded plants. We investigated the importance of the small tent-roosting bat Artibeus watsoni for dispersal of large seeds in the Sarapiquí Basin, Costa Rica. We registered at least 43 seed species > 8 mm beneath bat roosts, but a species accumulation curve suggests that this number would increase with further sampling. Samples collected beneath bat feeding roosts had, on average, 10 times more seeds and species than samples collected 5 m away from bat feeding roosts. This difference was generally smaller in small, disturbed forest patches. Species-specific abundance of seeds found beneath bat roosts was positively correlated with abundance of seedlings, suggesting that bat dispersal may influence seedling recruitment. Our study demonstrates a greater role of small frugivorous bats as dispersers of large seeds than previously thought, particularly in regions where populations of large-bodied seed dispersers have been reduced or extirpated by hunting.  相似文献   

15.
While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex‐specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite–disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex‐specific parasite–disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long‐term population health and survival.  相似文献   

16.
17.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

18.
Pollinator morphology can play an important role in structuring plant–pollinator relationships and a pollinator's morphology may be associated with aspects of its diet. We examined the relationship between morphology and the partitioning of flower‐based food resources for five species of flower‐visiting Cuban bats: Artibeus jamaicensis, Brachyphylla nana, Erophylla sezekorni, Monophyllus redmani and Phyllonycteris poeyi. We analyzed cranial traits and body size to assess differences among species with respect to morphological specializations. We also collected dietary data from guano and used acoustic monitoring to assess bat activity at flowers. We found evidence that bats partition floral resources, but we found no direct evidence that plants were limiting resources for the bats. Morphological similarity among bat species did not predict dietary overlap. Rather it was associated with phylogenic relationships among some species. Species with different morphological specialization for flower‐visiting consumed resources and visited food plants at different frequencies.  相似文献   

19.
Numerous processes operating at landscape scales threaten bats (e.g., habitat loss, disease). Temperate bat species are rarely examined at commensurate scales because of logistical and modeling constraints. Recent modeling approaches now allow for presence-only datasets, like those often available for bats, to assist with the development of predictive distribution models. We describe the use of presence-only data and rigorous predictive distribution models to examine habitat selection by bats across Colorado, USA. We applied hierarchical Bayesian models to bat locations from 1906–2018 to examine relationships of 13 species with landscape covariates. We considered differences in type of activity (foraging, roosting, hibernation), seasonality (summer vs. winter), and scale (1, 5, 10, and 15-km buffers). These findings generated statewide probability of use models to guide management of bat species in response to threats (e.g., white-nose syndrome [WNS]). Analysis of buffers suggest selection of land cover and environmental covariates occurs at different scales depending on the species and activity. Pinyon (Pinus spp.)-juniper (Juniperus spp.) appeared as a positive association in the highest number of models, followed by montane woodland, supporting the importance of these forest types to bats in Colorado. Other covariates commonly associated with bats in Colorado include westerly longitudes, and negative associations with montane shrubland. Mechanical treatments within pinyon-juniper and montane woodlands should be conducted with caution to avoid harming bat communities. We developed hibernation models for only 2 species, making apparent the lack of winter records for bat species in the state. We also provide a composite predictive surface of small-bodied bats in Colorado that delineates where these species, vulnerable to WNS, converge. This tool provides managers with focal points to apply surveillance and response strategies for the impending arrival of the disease.  相似文献   

20.
The bat fauna of the Mora excelsa-dominated rainforest in the Victoria-Mayaro Forest Reserve (VMFR) in south-east Trinidad was assessed over a six-week period. Trapping effort totaled 271 mist net hours and caught 143 bats of 22 species at a rate of one bat every two net-hours. Simpsons diversity index (1/D) was 1.28 for primary Mora forest and extrapolation using Chaos' estimator, a non-parametric method, estimated the total number of species as 39. Phyllostomid bats of the subfamilies Phyllostominae and Stenodermatinae were well represented, and frugivores predominated in number, accounting for 77% of all captures in primary forest. The most abundant bat, the ground-storey frugivore, Carollia perspicillata, accounted for 43% of all captures in primary forest and, in contrast to most bats, was also abundant on man-made paths through the forest. Four species not previously recorded from the reserve, Tonatia bidens, Trachops cirrhosus, a Myotis sp., and the rare Phylloderma stenops, were captured, bringing the total number of bats species known from the reserve to 35. Thus, over half (52%) of Trinidad's 67 bat species occur in this one forest reserve, making it a high priority area for effective protection and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号