首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER.  相似文献   

2.
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.  相似文献   

3.
The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.  相似文献   

4.
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.  相似文献   

5.
ME Kreft  H Robenek 《PloS one》2012,7(6):e38509
The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research.  相似文献   

6.
The apical surface of the terminally differentiated mouse bladder urothelium is largely covered by urothelial plaques, consisting of hexagonally packed 16-nm uroplakin particles. These plaques are delivered to the cell surface by fusiform vesicles (FVs) that are the most abundant cytoplasmic organelles. We have analyzed the functional involvement of several proteins in the apical delivery and endocytic degradation of uroplakin proteins. Although FVs have an acidified lumen and Rab27b, which localizes to these organelles, is known to be involved in the targeting of lysosome-related organelles (LROs), FVs are CD63 negative and are therefore not typical LROs. Vps33a is a Sec1-related protein that plays a role in vesicular transport to the lysosomal compartment. A point mutation in mouse Vps33a (Buff mouse) causes albinism and bleeding (Hermansky-Pudlak syndrome) because of abnormalities in the trafficking of melanosomes and platelets. These Buff mice showed a novel phenotype observed in urothelial umbrella cells, where the uroplakin-delivering FVs were almost completely replaced by Rab27b-negative multivesicular bodies (MVBs) involved in uroplakin degradation. MVB accumulation leads to an increase in the amounts of uroplakins, Lysosomal-associated membrane protein (LAMP)-1/2, and the activities of β-hexosaminidase and β-glucocerebrosidase. These results suggest that FVs can be regarded as specialized secretory granules that deliver crystalline arrays of uroplakins to the cell surface, and that the Vps33a mutation interferes with the fusion of MVBs with mature lysosomes thus blocking uroplakin degradation.  相似文献   

7.
The apical surface of mouse urothelium is covered by two-dimensional crystals (plaques) of uroplakin (UP) particles. To study uroplakin function, we ablated the mouse UPII gene. A comparison of the phenotypes of UPII- and UPIII-deficient mice yielded new insights into the mechanism of plaque formation and some fundamental features of urothelial differentiation. Although UPIII knockout yielded small plaques, UPII knockout abolished plaque formation, indicating that both uroplakin heterodimers (UPIa/II and UPIb/III or IIIb) are required for plaque assembly. Both knockouts had elevated UPIb gene expression, suggesting that this is a general response to defective plaque assembly. Both knockouts also had small superficial cells, suggesting that continued fusion of uroplakin-delivering vesicles with the apical surface may contribute to umbrella cell enlargement. Both knockouts experienced vesicoureteral reflux, hydronephrosis, renal dysfunction, and, in the offspring of some breeding pairs, renal failure and neonatal death. These results highlight the functional importance of uroplakins and establish uroplakin defects as a possible cause of major urinary tract anomalies and death.  相似文献   

8.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

9.
Cytokeratins, uroplakins and the asymmetric unit membrane are biochemical and morphological markers of urothelial differentiation. The aim of our study was to follow the synthesis, subcellular distribution and supramolecular organization of differentiation markers, cytokeratins and uroplakins, during differentiation of umbrella cells of mouse bladder urothelium. Regenerating urothelium after destruction with cyclophosphamide was used to simulate de-novo differentiation of cells, which was followed from day 1 to day 14 after cyclophosphamide injection. Cytokeratin 7 and uroplakins co-localized in the subapical cytoplasm of superficial cells from the early stage of differentiation on. At early stages of superficial cell differentiation cytokeratin 7 was filamentary organized, and rare uroplakins were found on the membranes of relatively small cytoplasmic vesicles, which were grouped in clusters under the apical membrane. Later, cytokeratin 7 gradually reorganized into a continuous trajectorial network, and uroplakins became organized into plaques of asymmetric unit membrane, which formed fusiform vesicles. After insertion of fusiform vesicles into the apical plasma membrane, the surface acquired microridged appearance of umbrella cells. Cytokeratin 20 appeared as the last differentiation marker of umbrella cells. Cytokeratin 20 was incorporated into the pre-existing trajectorial cytokeratin network. These results indicate that differentiation of urothelial cells starts with the synthesis of differentiation-related proteins i.e., cytokeratins and uroplakins, and later with their specific organization. We consider that the umbrella cell has reached its final stage of differentiation when uroplakins form plaques of asymmetric unit membrane that are inserted into the apical plasma membrane and when cytokeratin 20 becomes included in a trajectorial cytokeratin network in the subapical area of cytoplasm.  相似文献   

10.
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces.  相似文献   

11.
The distribution of the glycoprotein, mucin 1 (MUC1), was determined in lactating guinea-pig mammary tissue at the resolution of the electron microscope. MUC1 was detected on the apical plasma membrane of secretory epithelial cells, the surface of secreted milk-fat globules, the limiting membranes of secretory vesicles containing casein micelles and in small vesicles and tubules in the apical cytoplasm. Some of the small MUC1-containing vesicles were associated with the surfaces of secretory vesicles and fat droplets in the cytoplasm. MUC1 was detected in much lower amounts on basal and lateral plasma membranes. By quantitative immunocytochemistry, the ratio of MUC1 on apical membranes and milk-fat globules to that on secretory vesicle membranes was estimated to be 9.2:1 (density of colloidal gold particles/microm membrane length). The ratio of MUC1 on apical membranes compared with basal/lateral membranes was approximately 99:1. The data are consistent with a mechanism for milk-fat secretion in which lipid globules acquire an envelope of membrane from the apical surface and possibly from small vesicles containing MUC1 in the cytoplasm. During established lactation, secretory vesicle membrane does not appear to contribute substantially to the milk-fat globule membrane, or to give rise in toto to the apical plasma membrane.  相似文献   

12.
In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after vasopressin stimulation. Because a similar localization and regulation are observed in transfected Madin-Darby Canine Kidney (MDCK) cells, we investigated which segments of AQP2 are important for its routing to forskolin-sensitive vesicles and the apical membrane through analysis of AQP1-AQP2 chimeras. AQP1 with the entire COOH tail of AQP2 was constitutively localized in the apical membrane, whereas chimeras with shorter COOH tail segments of AQP2 were localized in the apical and basolateral membrane. AQP1 with the NH2 tail of AQP2 was constitutively localized in both plasma membranes, whereas AQP1 with the NH2 and COOH tail of AQP2 was sorted to intracellular vesicles and translocated to the apical membrane with forskolin. These data indicate that region N220-S229 is essential for localization of AQP2 in the apical membrane and that the NH2 and COOH tail of AQP2 are essential for trafficking of AQP2 to intracellular vesicles and its shuttling to and from the apical membrane. routing signals; chimera; Madin-Darby canine kidney cells; regulated trafficking  相似文献   

13.
Summary An NADH-ferricyanide reductase activity resistant to inactivation by cytochemical procedures was examined during decidualization of rat endometrium. Resistant activity was restricted to plasma membranes, distal elements of the Golgi apparatus, and discoid cisternae and cytoplasmic vesicles of decidual cells of endometrium of the pseudopregnant rat on days 3, 4, 5, 7, and 9, after mating. The procedure reduced or eliminated any evidence of NADH-ferricyanide reductase activity from other cellular components such as endoplasmic reticulum, nuclei, and mitochondria. The observations of the glutaraldehyde-resistant reductase in both plasma membranes and discoid cisternae may indicate a role for the latter in the biosynthesis of plasma membranes during decidualization when massive cell proliferation and membrane biosynthesis occur. The origin of the discoid cisternae is tentatively ascribed to the mature faces of the Golgi apparatus.Work supported in part by a grant from the NIH CA1880101 to D.J.M.  相似文献   

14.
Superficial cells of the oral mucosal epithelium in the carp and the cytoskeleton of the epithelial cells are examined by scanning and transmission electron microscopy. Microridges are formed on the surface of the epithelium. Epithelial cells contain two types of vesicles: mucous secretory vesicles and coated vesicles. Most of the mucous vesicles are situated in the center of the cell near the Golgi apparatus. In freeze-fracture replicas, intramembranous particles are abundant in the membranes of the secretory vesicles but rare in the apical plasma membrane. Coated vesicles are situated in the apical and subapical cytoplasm. A great number of thick filaments, considered to be keratin filaments, run randomly throughout the cell to form a meshwork. Thick filaments, which are sparse in the central cytoplasm, are connected to the membranes of the secretory vesicles and other membranous organelles. A layer of closely packed thin filaments, considered to be actin filaments, is found just beneath the apical plasma membrane. Microtubules also occur in the apical cytoplasm and run almost parallel to the cell surface. Both kinds of vesicles are connected to the thin and thick filaments. Their functional significance in the regulation of membrane at the free surface is discussed.  相似文献   

15.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

16.
The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of AUM is composed of crystalline patches of 12- nm protein particles, and that bovine AUMs contain three major proteins: the 27- to 28-kD uroplakin I, the 15-kD uroplakin II and the 47-kD uroplakin III. As a step towards elucidating the AUM structure and function, we have cloned the cDNAs of bovine uroplakin I (UPI). Our results established the existence of two isoforms of bovine uroplakin I: a 27-kD uroplakin Ia and a 28-kD uroplakin Ib. These two glycoproteins are closely related with 39% identity in their amino acid sequences. Hydropathy plot revealed that both have four potential transmembrane domains (TMDs) with connecting loops of similar length. Proteolytic digestion of UPIa inserted in vitro into microsomal vesicles suggested that its two main hydrophilic loops are exposed to the luminal space, possibly involved in interacting with the luminal domains of other uroplakins to form the 12-nm protein particles. The larger loop connecting TMD3 and TMD4 of both UPIa and UPIb contains six highly conserved cysteine residues; at least one centrally located cysteine doublet in UPIa is involved in forming intramolecular disulfide bridges. The sequences of UPIa and UPIb (the latter is almost identical to a hypothetical, TGF beta-inducible, TI-1 protein of mink lung epithelial cells) are homologous to members of a recently described family all possessing four transmembrane domains (the "4TM family"); members of this family include many important leukocyte differentiation markers such as CD9, CD37, CD53, and CD63. The tissue- specific and differentiation-dependent expression as well as the naturally occurring crystalline state of uroplakin I molecules make them uniquely suitable, as prototype members of the 4TM family, for studying the structure and function of these integral membrane proteins.  相似文献   

17.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

18.
The composition of the apical plasma membrane of bladder superficial urothelial cells is dramatically modified during cell differentiation, which is accompanied by the change in the dynamics of endocytosis. We studied the expression of urothelial differentiation-related proteins uroplakins and consequently the apical plasma membrane molecular composition in relation to the membrane-bound and fluid-phase endocytosis in bladder superficial urothelial cells. By using primary urothelial cultures in the environment without mechanical stimuli, we studied the constitutive endocytosis. Four new findings emerge from our study. First, in highly differentiated superficial urothelial cells with strong uroplakin expression, the endocytosis of fluid-phase endocytotic markers was 43% lower and the endocytosis of membrane-bound markers was 86% lower compared to partially differentiated cells with weak uroplakin expression. Second, superficial urothelial cells have 5–15-times lower endocytotic activity than MDCK cells. Third, in superficial urothelial cells the membrane-bound markers are delivered to lysosomes, while fluid-phase markers are seen only in early endocytotic compartments, suggesting their kiss-and-run recycling. Finally, we provide the first evidence that in highly differentiated cells the uroplakin-positive membrane regions are excluded from internalization, suggesting that uroplakins hinder endocytosis from the apical plasma membrane in superficial urothelial cells and thus maintain optimal permeability barrier function.  相似文献   

19.
C. Kanno 《Protoplasma》1990,159(2-3):184-208
Summary The lactating mammary gland is one of the most highly differentiated and metabolically active organs in the body. Membranes of the lactating mammary cell have important roles in transmitting from one membrane to another of hormonal information and in milk secretion, which is the final event. During milk secretion, the projection of the surface membrane into the alveolar lumen by enveloping intracellular lipid droplets with the apical plasma membrane is one of the most remarkable aspects of biological membrane action throughout nature.This review focuses on current knowledge about membranes in the lactating mammary gland. (1) Advances in the isolation and properties of membranes, especially the plasma membrane and Golgi-derived secretory vesicles, concerned with milk secretion from the lactating mammary gland are described. (2) Milk serum components are secreted by fusing the membranes of secretory vesicles that condense milk secretions with the plasma membrane in the apical regions. This occurs through the formation of a tubular-shaped projection and vesicular depression in a ball-and-socket configuration, as well as by simple fusion. (3) Intracellular lipid droplets are directly extruded from the mammary epithelial cells by progressive envelopment of the plasma membranes in the apical regions. (4) The balance between the surface volume lost in enveloping lipid droplets and that provided by fusion of the secretory vesicle and other vesicles with the apical plasma membrane is discussed. (5) The membrane surrounding a milk fat globule, which is referred to as the milk fat globule membrane (MFGM), is composed of at least the coating membrane of an intracellular lipid droplet, of the apical plasma membrane and secretory vesicle membrane, and of a coat material. Consequently, MFGM is molecularly different from the plasma membrane in composition. (6) MFGM of bovine milk is structurally composed of an inner coating membrane and outer plasma membrane just after segregation. These two membranes are fused and reorganized through a process of vesiculation and fragmentation to stabilize the fat globules. Hypothetical structural models for MFGM from bovine milk fat globules just after secretion and after rearrangement are proposed.Abbrevations MFGM milk fat globule membrane - HEPES N-2-hydroxylpiperazine-N-2-ethanesulfonic acid - INT 2-(p-indophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - Sph sphingomyelin - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PS phosphatidyl serine - PI phosphatidyl inositol - PAS periodic acid-Schiff reagent - CB Coomassie brilliant blue R-250 Dedicated to Professor Stuart Patton on the occasion of his 70th birthday.  相似文献   

20.
M Locke  P Huie 《Tissue & cell》1979,11(2):277-291
The apical plasma membranes of Calpodes epidermal cells have small fattened areas or plaques with an extra density upon their cytoplasmic face. The plaques are typically at the tips of microvilli. The are present during the deposition of fibrous cuticle and the cuticulin layer. Since the plaques are close (less than 15nm) to the sites where these kinds of cuticle first appear, they are presumed to have a role in their synthesis and/or deposition and orientation. When fifth stage larval cuticle deposition ceases prior to pupation, the plaques are lost as the area of the apical plasma membrane is reduced. The plaques pass from the surface into pinocytosis vesicles and multivesicular bodies where they are presumably digested. The loss of plaques occurs as the blood level of moulting hormone reaches a peak at the critical period after which the prothoracic glands are no longer needed for pupation. Apolysis or separation of the epidermis from the old cuticle is the stage when plaques are absent, the old ones have been lost but the new ones have yet to form. After the critical period, the epidermis prepared for pupation with a phase of elevated RNA synthesis at the end of which plaques and microvilli reform in time to secrete the new cuticulin layer and later the fibrous cuticle of the pharate pupa. There is a new generation of plaques for each moult and succeeding intermoult and each generation is involved in two kinds of cuticle deposition before involution and redifferentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号