首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structure of a valinomycin analogue, cyclo[-(D-Val-Hyi-Val-D-Hyi)3-]x(C60H102N6O18) crystallized with dioxane and water molecules, has been solved by X-ray direct methods. The conformation found is analogous to one established for free meso-valinomycin crystallized from other organic solvents. It is characterized by a centrosymmetric bracelet form, stabilized by six intramolecular 4----1 type hydrogen bonds between amide N-H and C = O groups. One water molecule is fixed asymmetrically by hydrogen bonds in the internal negatively charged cavity of the complexon. The meso-valinomycin molecule "bracelets" in the crystal form stacks alternatively with dioxane molecules.  相似文献   

2.
We present an analysis of the water molecules immobilized at the protein-protein interfaces of 115 homodimeric proteins and 46 protein-protein complexes, and compare them with 173 large crystal packing interfaces representing nonspecific interactions. With an average of 15 waters per 1000 A2 of interface area, the crystal packing interfaces are more hydrated than the specific interfaces of homodimers and complexes, which have 10-11 waters per 1000 A2, reflecting the more hydrophilic composition of crystal packing interfaces. Very different patterns of hydration are observed: Water molecules may form a ring around interfaces that remain "dry," or they may permeate "wet" interfaces. A majority of the specific interfaces are dry and most of the crystal packing interfaces are wet, but counterexamples exist in both categories. Water molecules at interfaces form hydrogen bonds with protein groups, with a preference for the main-chain carbonyl and the charged side-chains of Glu, Asp, and Arg. These interactions are essentially the same in specific and nonspecific interfaces, and very similar to those observed elsewhere on the protein surface. Water-mediated polar interactions are as abundant at the interfaces as direct protein-protein hydrogen bonds, and they may contribute to the stability of the assembly.  相似文献   

3.
The use of polypeptide models has proved to be a valuable tool to obtain accurate information on the collagen triple helix. Here we report the high resolution crystal structure of a collagen-like polypeptide with repeating sequence Pro-Hyp-Gly. The structure has been refined to an R(factor) of 0.137 and an R(free) of 0.163 using synchrotron diffraction data extending up to 1.4 A resolution. The polypeptide triple-helical structure binds a large number of water molecules, in contrast with a previous structure determination at lower resolution. The highly hydrated nature of this polypeptide confirms a number of previous studies conducted both in solution and in the crystal state. In addition, neighboring polypeptide triple helices are directly bound in the crystal through Hyp-Hyp hydrogen-bonding interactions. This finding supports the idea that Hyp residues may be important for the assembly of the triple helices in the collagen fibrils and may stabilize the fibrils by mediating direct contacts between neighboring molecules.  相似文献   

4.
The crystal structure of meso-tetrasulfonatophenylporphyrin complexed with concanavalin A (ConA) was determined at 1.9 A resolution. Comparison of this structure with that of ConA bound to methyl alpha-d-mannopyranoside provided direct structural evidence of molecular mimicry in the context of ligand receptor binding. The sulfonatophenyl group of meso-tetrasulfonatophenylporphyrin occupies the same binding site on ConA as that of methyl alpha-d-mannopyranoside, a natural ligand. A pair of stacked porphyrin molecules stabilizes the crystal structure by end-to-end cross-linking with ConA resulting in a network similar to that observed upon agglutination of cells by lectins. The porphyrin binds to ConA predominantly through hydrogen bonds and water-mediated interactions. The sandwiched water molecules in the complex play a cementing role, facilitating favorable binding of porphyrin. Seven of the eight hydrogen bonds observed between methyl alpha-d-mannopyranoside and ConA are mimicked by the sulfonatophenyl group of porphyrin after incorporating two water molecules. Thus, the similarity in chemical interactions was manifested in terms of functional mimicry despite the obvious structural dissimilarity between the sugar and the porphyrin.  相似文献   

5.
We synthesized and solved the crystalline structure of the oligopeptide acetyl-(glycyl-beta-alanyl)2-NH propyl. The crystal is formed by layers of helical molecules with the same chirality; however, right-handed layers alternate with left-handed ones. Inside every layer, the packing of helices is pseudohexagonal with hydrogen bonds between neighbor molecules. The structure found affords direct support for the model proposed by Crick and Rich for polyglycine II and also provides an interpretation for the structure of a newly found family of polyamides that do not form sheets as observed in most nylon structures.  相似文献   

6.
The crystal structure of the title compound, an analogue of the angiotensinogen-(10-13) peptide in which the N-terminal leucine and the C-terminal tyrosine are respectively replaced by the phenyloxy-acetic group and by phenylalanine, has been determined by X-ray diffraction. The peptide crystallizes in the space group P2(1)2(1)2(1) with a = 4.866(1), b = 22.311(3), c = 27.213(4) A and Z = 4. The crystal structure was solved by direct methods and refined to an R value of 0.056. The molecules adopt a pleated sheet conformation with the hydrophobic residues alternatively situated on the right and left of the main chain. In the crystallographic "a" direction, the molecules are linked by hydrogen bonds and form parallel pleated sheet-type structures.  相似文献   

7.
A recent study describes direct binding between a gammadelta T-cell receptor and its ligand, T22, a non-classical class I major histocompatibility complex (MHC) molecule. A companion study, solving the crystal structure of T22, highlights the differences between this interaction and those of classical MHC molecules and alphabeta T cells.  相似文献   

8.
Purine nucleoside phosphorylase (PNP) from Escherichia coli is a homohexamer that catalyses the phosphorolytic cleavage of the glycosidic bond of purine nucleosides. The first crystal structure of the ternary complex of this enzyme (with a phosphate ion and formycin A), which is biased by neither the presence of an inhibitor nor sulfate as a precipitant, is presented. The structure reveals, in some active sites, an unexpected and never before observed binding site for phosphate and exhibits a stoichiometry of two phosphate molecules per enzyme subunit. Moreover, in these active sites, the phosphate and nucleoside molecules are found not to be in direct contact. Rather, they are bridged by three water molecules that occupy the "standard" phosphate binding site.  相似文献   

9.
The crystal structure of the RNA octamer, 5'-GGCGUGCC-3' has been determined from x-ray diffraction data to 1.5 angstroms resolution. In the crystal, this oligonucleotide forms five self-complementary double-helices in the asymmetric unit. Tandem 5'GU/3'UG basepairs comprise an internal loop in the middle of each duplex. The NMR structure of this octameric RNA sequence is also known, allowing comparison of the variation among the five crystallographic duplexes and the solution structure. The G.U pairs in the five duplexes of the crystal form two direct hydrogen bonds and are stabilized by water molecules that bridge between the base of guanine (N2) and the sugar (O2') of uracil. This contrasts with the NMR structure in which only one direct hydrogen bond is observed for the G.U pairs. The reduced stability of the r(CGUG)2 motif relative to the r(GGUC)2 motif may be explained by the lack of stacking of the uracil bases between the Watson-Crick and G.U pairs as observed in the crystal structure.  相似文献   

10.
A method for direct assignment of the absolute configuration of molecules and the absolute structures of polar crystals, independent to that of Bijvoet, is described. The method correlates between the two-dimensional packing arrangement of specific faces, that delineate crystals during their growth and dissolution, with molecules present in the environment. The structural information stored in these faces is transferred to "tailor-made" molecules added to the solvent by controlled morphological changes induced to the growing crystals and by the creation of etch pits at specific crystal faces during their dissolution. In addition, the "tailor-made" molecules are occluded enantioselectively as guests within specific sectors of the host crystals. The method is illustrated for a variety of molecules and crystals including the assignment of the absolute configuration of several alpha-amino acids as "tailor-made" additives in centrosymmetric crystals of glycine and serine, for the absolute structure of polar crystals of sugars and alpha-amino acids and consequently the absolute configuration of molecules packed in such crystals.  相似文献   

11.
The carboxyl-terminal Src kinase (Csk) is an indispensable negative regulator for the Src family tyrosine kinases (SFKs) that play pivotal roles in various cell signalings. To understand the molecular basis of the Csk-mediated regulation of SFKs, we elucidated the crystal structure of full-length Csk. The Csk crystal consists of six molecules classified as active or inactive states according to the coordinations of catalytic residues. Csk assembles the SH2 and SH3 domains differently from inactive SFKs, and their binding pockets are oriented outward enabling the intermolecular interaction. In active molecules, the SH2-kinase and SH2-SH3 linkers are tightly stuck to the N-lobe of the kinase domain to stabilize the active conformation, and there is a direct linkage between the SH2 and the kinase domains. In inactive molecules, the SH2 domains are rotated destroying the linkage to the kinase domain. Cross-correlation matrices for the active molecules reveal that the SH2 domain and the N-lobe of the kinase domain move as a unit. These observations suggest that Csk can be regulated through coupling of the SH2 and kinase domains and that Csk provides a novel built-in activation mechanism for cytoplasmic tyrosine kinases.  相似文献   

12.
Direct evidence for antifreeze glycoprotein adsorption onto an ice surface   总被引:1,自引:0,他引:1  
R A Brown  Y Yeh  T S Burcham  R E Feeney 《Biopolymers》1985,24(7):1265-1270
Aqueous solutions of antifreeze glycoproteins (AFGP) exhibit hysteresis between the freezing and melting temperatures. Several recent studies on the mechanism of function of this protein system suggest that a likely model is for the antifreeze molecules to be adsorbed onto the surface of the crystals. However, direct proof of the presence of adsorbed AFGP has eluded previous researchers. In the present study, enhanced surface second-harmonic generation (SSHG) was observed in the presence of an active AFGP solution in contact with a pure single crystal of ice. The enhancement of SSHG is a positive indication that active AFGP molecules adsorb to the surface of ice crystals.  相似文献   

13.
Using the case of the catalytic domain of MMP-12 in complex with the known inhibitor CGS27023A, a recently assembled 3D (15)N-edited/(14)N,(12)C-filtered ROESY experiment is used to monitor and distinguish protein amide protons in fast exchange with bulk water from amide protons close to water molecules with longer residence times, the latter possibly reflecting water molecules of structural or functional importance. The (15)N-edited/(14)N,(12)C-filtered ROESY spectra were compared to the original (15)N-edited/(14)N,(12)C-filtered NOESY and the conventional amide-water exchange experiment, CLEANEX. Three protein backbone amide protons experiencing direct dipolar cross relaxation with water in the (15)N-edited/(14)N,(12)C-filtered ROESY spectrum were assigned. In an ensemble of six crystal structures, two conserved water molecules within 3 ? of the three amide protons were identified. These two water molecules are buried into cavities in the protein surface and thus sufficiently slowed down by the protein topology to account for the observed dipolar interaction. Structural analysis of an ensemble of six crystal structures ruled out any exchange-relayed contributions for the amide-water interactions of interest.  相似文献   

14.
HCO-Met-Leu-Ain-OMe (2), an analog of the chemotactic peptide HCO-Met-Leu-Phe-OH, containing the conformationally blocked residue of the 2-aminoindane-2-carboxylic acid (Ain) has been synthesized and its crystal and molecular conformation has been determined. Crystals of 2 are monoclinic, space group P2(1), with a = 15.059(7), b = 18.548(7), c = 9.600(4) A; beta = 85.04(3) degrees. The structure has been solved by direct methods and refined to R = 0.069 for 2813 independent reflections with I greater than 2.5 sigma (I). Two independent molecules A and B have been found in the asymmetric unit of the crystal of 2. Their conformation can be described as extended at the Met and Leu residues, but folded at the C-terminal Ain residue. The helical folding is left- and right-handed in the A and B molecule, respectively. The crystal packing is characterized by ribbons of intermolecular hydrogen bonded molecules extended along the c direction. The constrained analog 2 is highly active in the superoxide production, thus indicating that a stabilization of a helical folding at the C-terminal region of chemotactic tripeptides maintains the activity. The orientation of the aromatic ring, with respect to its adjacent backbone atoms, does not seem critical for the activity.  相似文献   

15.
Superantigens (SAGs) crosslink MHC class II and TCR molecules, resulting in an overstimulation of T cells associated with human disease. SAGs interact with several different surfaces on MHC molecules, necessitating the formation of multiple distinct MHC-SAG-TCR ternary signaling complexes. Variability in SAG-TCR binding modes could also contribute to the structural heterogeneity of SAG-dependent signaling complexes. We report crystal structures of the streptococcal SAGs SpeA and SpeC in complex with their corresponding TCR beta chain ligands that reveal distinct TCR binding modes. The SpeC-TCR beta chain complex structure, coupled with the recently determined SpeC-HLA-DR2a complex structure, provides a model for a novel T cell signaling complex that precludes direct TCR-MHC interactions. Thus, highly efficient T cell activation may be achieved through structurally diverse strategies of TCR ligation.  相似文献   

16.
The crystal and molecular structure of the 1:1 inclusion complex of beta-cyclodextrin (cyclomaltoheptaose) with squaric acid (3,4-dihydroxycyclobutene-1,2-dione) was determined by X-ray diffraction. The complex crystallizes in the monoclinic P2(1) space group and belongs to the monomeric cage-type, characterized by a herringbone-like packing motif. Co-crystallized water molecules are present on seven sites, of which six are fully occupied. The guest molecule is placed inside the beta-cyclodextrin cavity, perpendicular to the plane defined by the glycosidic O-4n atoms, and held in place by direct and water-mediated hydrogen bonds mainly involving symmetry-related beta-cyclodextrin molecules. The accommodation of the planar guest molecule into the beta-cyclodextrin cavity determines a significant distortion of the latter from the sevenfold symmetry.  相似文献   

17.
The water structure of rhombohedral 2 Zn insulin crystal which contains about 280 water molecules and 0.55-0.60 mol citrate molecules per dimer has been studied by X-ray crystallographic refinement with 1.1 A resolution data. Atomic parameters of 83 fully occupied and 258 partially occupied water molecules and 0.3 mol of citrate were obtained. Full matrix least-squares method with isotropic temperature factor was used for the refinement of partially occupied water molecules. The water molecules in this crystal exist in one of the three states: fully occupied water, partially occupied water and water continuum, and a schematic model of water structure in protein crystal was proposed. The flexibility of water molecules is described.  相似文献   

18.
U Heinemann  C Alings    M Bansal 《The EMBO journal》1992,11(5):1931-1939
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 A and c = 44.59 A. The structure has been determined by X-ray diffraction methods at 2.2 A resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.  相似文献   

19.
The crystal structure of hexaaquamanganese(II) bis{bis(N-salicylideneglycinato)manganate(III)} dihydrate has been determined by X-ray analysis. The complex crystallizes in the monoclinic space group I2|a, with unit-cell dimensions a = 37.431(5), b = 12.100(1), c = 9.448(1) Å, β = 92.31(1)°. The structure was deduced by the direct method and refined by the block-diagonal least-squares technique to a final R value of 0.062 for 3904 observed reflections. The Mn(II) is octahedrally ligated by six water molecules, while Mn(III) is octahedrally chelated by two salicylideneglycinate ligands, of which one is nearly planar and the other considerably bent.It was discovered that the crystal is, as a whole, of a ‘sandwich’ structure made of one central sheet containing hexaaquamanganese(II)'s and the water molecules of crystallization, and two outside sheets containing bis(N-salicylideneglycinato)manganate(III)'s.  相似文献   

20.
Conformational changes in native and variant forms of the human plasma protein transthyretin (TTR) induce several types of amyloid diseases. Biochemical and structural studies have mapped the initiation site of amyloid formation onto residues at the outer C and D beta-strands and their connecting loop. In this study, we characterise an engineered variant of transthyretin, Ala108Tyr/Leu110Glu, which is kinetically and thermodynamically more stable than wild-type transthyretin, and as a consequence less amyloidogenic. Crystal structures of the mutant were determined in two space groups, P2(1)2(1)2 and C2, from crystals grown in the same crystallisation set-up. The structures are identical with the exception for residues Leu55-Leu58, situated at beta-strand D and the following DE loop. In particular, residues Leu55-His56 display large shifts in the C2 structure. There the direct hydrogen bonding between beta-strands D and A has been disrupted and is absent, whereas the beta-strand D is present in the P2(1)2(1)2 structure. This difference shows that from a mixture of metastable TTR molecules, only the molecules with an intact beta-strand D are selected for crystal growth in space group P2(1)2(1)2. The packing of TTR molecules in the C2 crystal form and in the previously determined amyloid TTR (ATTR) Leu55Pro crystal structure is close-to-identical. This packing arrangement is therefore not unique in amyloidogenic mutants of TTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号