首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total pyridine nucleotide concentration of root tissue for young soybean (Glycine max var. Bansei) and sunflower (Helianthus annuus L. var. Mammoth Russian) plants is the same with either ammonium or nitrate, but nitrate results in an increased proportion of total oxidized plus reduced NADP (NADP[H]) seemingly at the expense of NAD. The activity of NADH- and NADPH-dependent forms of glutamic acid dehydrogenase is correlated with the ratio of total oxidized plus reduced NAD to NADP(H). The low NAD: NADH ratio maintained in nitrate roots despite active NADH utilization via nitrate reductase and glutamic acid dehydrogenase may be the result of nitrate-stimulated glycolysis. Nitrate roots also maintain a high level of NADPH, presumably by the stimulatory effect of nitrate utilization on glucose-6-phosphate dehydrogenase activity. In the presence of nitrate rather than ammonium, the highly active nitrate-reducing leaves of soybean show a greater proportion of total pyridine nucleotide in the form of NADP(H) than do the inactive leaves of sunflower.  相似文献   

2.
The effects of coenzymes NAD(P) and NAD(P)H on the kinetics of the ox liver glutamate dehydrogenase reaction have been studied. The oxidized coenzymes were shown to activate alpha-ketoglutarate amination at inhibiting concentrations of NADH and NADPH. The reduced coenzymes, NADH and NADPH, inhibit glutamate deamination with both NAD and NADP as coenzymes. The data obtained are discussed in terms of literature data on the mechanisms of the coenzyme effects on the glutamate dehydrogenase activity and are inconsistent with the theory of direct ligand--ligand interactions. It was shown that the peculiarities of the glutamate dehydrogenase kinetics can easily be interpreted in the light of the two state models.  相似文献   

3.
The content of NADH and NADPH was measured in the intact and regenerating rat liver. In the intact rat liver, the content of NAD+, NADH, NADP+ and NADPH was 235 +/- 6.4, 66.6 +/- 4.3, 73.3 +/- 2.5 and 148.0 +/- 4.6 micrograms/g crude liver weight, respectively. Seasonal alterations in the rat liver content of coenzymes were established. No changes were found in the content of nicotinamide coenzymes in the regenerating liver 4 and 18 h after operation. Twenty-four hours after operation, a 25.6% increase in the content of NAD+ and a 57.8% reduction in the NADH content were recorded in the liver of hepatectomized animals. At the same time the total content of NAD+ plus NADH changed but insignificantly (14.7%). The total content of NADP+ plus NADPH dropped by 29.8% (within the above period). Thirty-two hours after operation the content of all the nicotinamide coenzymes returned to the initial level.  相似文献   

4.
The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway alone or with lactate, and to evaluate the impact on the intact cell NQO1 activity. Cells were treated with 2-deoxyglucose, iodoacetate, or epiandrosterone in the absence or presence of lactate, NQO1 activity was measured in intact cells using duroquinone as the electron acceptor, and pyridine nucleotide redox status was measured in total cell KOH extracts by high-performance liquid chromatography. 2-Deoxyglucose decreased NADH/NAD(+) and NADPH/NADP(+) ratios by 59 and 50%, respectively, and intact cell NQO1 activity by 74%; lactate restored NADH/NAD(+), but not NADPH/NADP(+) or NQO1 activity. Iodoacetate decreased NADH/NAD(+) but had no detectable effect on NADPH/NADP(+) or NQO1 activity. Epiandrosterone decreased NQO1 activity by 67%, and although epiandrosterone alone did not alter the NADPH/NADP(+) or NADH/NAD(+) ratio, when the NQO1 electron acceptor duroquinone was also present, NADPH/NADP(+) decreased by 84% with no impact on NADH/NAD(+). Duroquinone alone also decreased NADPH/NADP(+) but not NADH/NAD(+). The results suggest that NQO1 activity is more tightly coupled to the redox status of the NADPH/NADP(+) than NADH/NAD(+) redox pair, and that NADPH is the endogenous NQO1 electron donor. Parallel studies of pulmonary endothelial transplasma membrane electron transport (TPMET), another redox process that draws reducing equivalents from the cytosol, confirmed previous observations of a correlation with the NADH/NAD(+) ratio.  相似文献   

5.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

6.
A freshwater Pseudomonas sp. was grown in continuous culture under steady-state conditions in L-lactate-, succinate-, glucose- or ammonium-limited media. Under carbon limitation, the NAD(H) (i.e. NAD + NADH) concentration of the organisms increased exponentially from approximately 2 to 7 mumol/g dry wt as the culture dilution rate (D) was decreased from 0.5 to 0.02 h-1. Organisms grown at a given D in any of the carbon-limited media possessed very similar levels of NAD(H). Therefore, under these conditions, cellular NAD(H) was only a function of the culture O and was independent of the nature of the culture carbon source. D had no influence on the NAD(H) content of cells grown under ammonium limitation. In contrast, cellular NADH concentration was not influenced by D in carbon- or ammonium-limited media. In L-lactate-limited medium, bacteria possessed 0.14 mumol NADH/g dry wt; very similar levels were found in organisms grown in the other media. The results are consistent with those of Wimpenny & Firth (1972) that bacteria rigidly maintain a constant NADH level rather than a constant constant NADH: NAD ratio. NADP(H) (i.e. NADP + NADPH) and NADPH levels were also not influenced by changes in the culture carbon source or in D; in L-lactate-limited medium these concentrations were 0.97 and 0.53 mumol/g cell dry wt, respectively. The NADPH:NADP(H) ratio was much higher than the NADH:NAD(H) ratio, averaging 55% in carbon-limited cells.  相似文献   

7.
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The enzyme comprises three components; dI binds NAD(H), dIII binds NADP(H), and dII spans the membrane. The 1,4,5,6-tetrahydro analogue of NADH (designated H2NADH) bound to isolated dI from Rhodospirillum rubrum transhydrogenase with similar affinity to the physiological nucleotide. Binding of either NADH or H2NADH led to closure of the dI mobile loop. The 1,4,5,6-tetrahydro analogue of NADPH (H2NADPH) bound very tightly to isolated R. rubrum dIII, but the rate constant for dissociation was greater than that for NADPH. The replacement of NADP+ on dIII either with H2NADPH or with NADPH caused a similar set of chemical shift alterations, signifying an equivalent conformational change. Despite similar binding properties to the natural nucleotides, neither H2NADH nor H2NADPH could serve as a hydride donor in transhydrogenation reactions. Mixtures of dI and dIII form dI2dIII1 complexes. The nucleotide charge distribution of complexes loaded either with H2NADH and NADP+ or with NAD+ and H2NADPH should more closely mimic the ground states for forward and reverse hydride transfer, respectively, than previously studied dead-end species. Crystal structures of such complexes at 2.6 and 2.3 A resolution are described. A transition state for hydride transfer between dihydronicotinamide and nicotinamide derivatives determined in ab initio quantum mechanical calculations resembles the organization of nucleotides in the transhydrogenase active site in the crystal structure. Molecular dynamics simulations of the enzyme indicate that the (dihydro)nicotinamide rings remain close to a ground state for hydride transfer throughout a 1.4 ns trajectory.  相似文献   

8.
A Aellig  M Maillard  A Phavorin  J Frei 《Enzyme》1977,22(3):207-212
The determination of the coenzymes NAD+, NADH, NADP+ and NADPH, by the use of a method of enzymatic cycling, demonstrates that the enzymes responsible for the stimulations found during the phagocytosis of Staphylococcus albus are NADH and NADPH oxidase of human leukocytes and NADPH oxidase in the case of guinea pig leukocytes. The effects of serum, of the bacterial strain used and of phospholipase C are also discussed.  相似文献   

9.
The nicotinamide nucleotide dimers (NAD)2 and (NADP)2, obtained by electrochemical reduction of NAD+ and NADP+, are able to reduce such single-electron acceptors as the proteins cytochrome c, azurin and methaemoglobin, though at different rates. Under the same conditions the reduced nicotinamide coenzymes NADH and NADPH are not able to reduce these proteins at measurable rates unless a catalyst (phenazine methosulphate or NADH-cytochrome c reductase in the case of cytochrome) is present. The redox mechanism seems to involve the formation of an NAD(P). radical that in the presence of O2 gives rise to superoxide (O2.-), since superoxide dismutase inhibited these reactions.  相似文献   

10.
Ferredoxin-NADP(+) reductase catalyses NADP(+) reduction, being specific for NADP(+)/H. To understand coenzyme specificity determinants and coenzyme specificity reversion, mutations at the NADP(+)/H pyrophosphate binding and of the C-terminal regions have been simultaneously introduced in Anabaena FNR. The T155G/A160T/L263P/Y303S mutant was produced. The mutated enzyme presents similar k(cat) values for NADPH and NADH, around 2.5 times slower than that reported for WT FNR with NADPH. Its K(m) value for NADH decreased 20-fold with regard to WT FNR, whereas the K(m) for NADPH remains similar. The combined effect is a much higher catalytic efficiency for NAD(+)/H, with a minor decrease of that for NADP(+)/H. In the mutated enzyme, the specificity for NADPH versus NADH has been decreased from 67,500 times to only 12 times, being unable to discriminate between both coenzymes. Additionally, giving the role stated for the C-terminal Tyr in FNR, its role in the energetics of the FAD binding has been analysed.  相似文献   

11.
Two octopine dehydrogenases in crown-gall tumor tissue   总被引:1,自引:0,他引:1  
Extracts from four crown-gall tumor tissue culture lines, originally induced by two octopine-type strains of Agrobacterium on three plant species, converted l-arginine-[5-3H] to a compound which co-migrated with octopine on electrophoresis. Synthesis showed dependence on added pyruvate and reduced pyridine nucleotide. Both NADH and NADPH were active and mixtures of the two coenzymes, when tested with Vinca strain W1 tumor extracts, were more effective than either coenzyme at comparable concentrations. Addition of an NADH-consuming enzyme system to reaction mixtures containing NADPH had little effect on this activity. Products formed by Vinca rosea strain W1 tumor extracts and Phaseolus vulgaris strain B6 tumor extracts in reaction mixtures containing pyruvate plus NADH or NADPH co-eluted with unlabeled octopine on ion exchange chromatography. The product from the Vinca reaction mixtures co-migrated with an octopine standard in three TLC systems. Permanganate treatment of the enzymatically formed tritiated product and of unlabeled octopine gave compounds with Rf, similar to arginine and γ-guanidinobutyric acid, the products expected from permanganate degradation of octopine. The Vinca W1 extracts catalyzed the oxidative cleavage of octopine, with the formation of arginine, in the presence of NAD or NADP. Two octopine dehydrogenases were concluded to be present in these tissues, one dependent on NAD, the second on NADP.  相似文献   

12.
The steady-state levels and redox states of pyridine nucleotide pools have been studied in yeast as a function of external growth conditions. Yeast grown aerobically on 0.8% glucose show two distinct phases of logarithmic growth, a first phase utilizing glucose with ethanol accumulation, and a second phase utilizing ethanol. During growth on glucose, the size of the NADP pool (NADP+ + NADPH) is maintained at approximately 12% the size of the NAD pool (NAD+ + NADH). Upon exhaustion of glucose, the mechanism(s) that maintain the levels of NADP relative to NAD are altered, resulting in a rapid 2- to 2.5-fold decrease in the size of the NADP pool relative to the size of the NAD pool. The lower levels of NADP are maintained during growth on ethanol. The NAD pool is approximately 50% NADH during both the glucose and ethanol phases of growth, while the NADP pool is approximately 67 and 48% NADPH during the glucose and ethanol phases of growth, respectively. Rapid media transfer experiments show that the decrease in NADP is reversible, that it does not require the net synthesis of pyridine nucleotide or protein, and that changes in the size of the NADP pool relative to the total pyridine nucleotide pool are correlated with changes in the redox state of the NADP pool.  相似文献   

13.
The following enzyme activities were determined in the mitochondria of cucumber leaves (Cucumis sativus L. cv. Suisei No. 2) during ammonium toxicity: malate dehydrogenase, succinate dehydrogenase, glutamate dehydrogenase, cytochrome c oxidase, NADH diaphorase, NADH oxidase, succinate: cytochrome c oxidoreductase, NADH: cytochrome c oxidoreductase and adenosine triphosphatase. The activities of all enzymes except ATPase increased more or less during ammonium toxicity. Generally speaking the marked increase was found at 7 days treatment with 200 mg/1 NH3-N. The adenosine triphosphatase activity of injured plants was lower than that of normal plants through treatment. The addition of various organic acids (15 mM) to the culture solution contaning 200 mg/1 NH3-N (14.3 mM NH4Cl) suppressed the ammonium toxicity. The accumulation of free ammonia in the leaves was also repressed by the addition of organic acids. The results of present and previous reports suggest that the increase of respiratory metabolism due to ammonium toxicity is required for the supply of organic acids, specially δ-ketoglutaric acid, to counteract ammonia. Uncoupling in mitochondria resulting in the increase of respiration does not seem to occur during ammonium toxicity.  相似文献   

14.
1. The activity of a Mg(2+)-dependent Na(+)-plus-K(+)-activated adenosine triphosphatase and the concentrations of nicotinamide nucleotide coenzymes have been measured in the immature parotid glands of young lambs and in the actively secreting glands of adult sheep. 2. The activity of the adenosine triphosphatase increased during development and attained relatively high levels in the mature secreting gland. 3. A high ([NAD]+[NADH(2)])/([NADP]+[NADPH(2)]) ratio (approx. 10:1) was observed in the parotid glands of lambs and sheep. 4. The high concentrations of NAD and the very low concentrations of NADPH(2) have been discussed in relation to metabolic activity, the activity of the Na(+)-plus-K(+)-activated adenosine triphosphatase and the secretion of saliva by the parotid gland.  相似文献   

15.
We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.  相似文献   

16.
Chloroplast ferredoxin-NADP(+) reductase has a 32,000-fold preference for NADPH over NADH, consistent with its main physiological role of NADP(+) photoreduction for de novo carbohydrate biosynthesis. Although it is distant from the 2'-phosphoryl group of NADP(+), replacement of the C-terminal tyrosine (Tyr(308) in the pea enzyme) by Trp, Phe, Gly, and Ser produced enzyme forms in which the preference for NADPH over NADH was decreased about 2-, 10-, 300-, and 400-fold, respectively. Remarkably, in the case of the Y308S mutant, the k(cat) value for the NADH-dependent activity approached that of the NADPH-dependent activity of the wild-type enzyme. Furthermore, difference spectra of the NAD(+) complexes revealed that the nicotinamide ring of NAD(+) binds at nearly full occupancy in the active site of both the Y308G and Y308S mutants. These results correlate well with the k(cat) values obtained with these mutants in the NADH-ferricyanide reaction. The data presented support the hypothesis that specific recognition of the 2'-phosphate group of NADP(H) is required but not sufficient to ensure a high degree of discrimination against NAD(H) in ferredoxin-NADP(+) reductase. Thus, the C-terminal tyrosine enhances the specificity of the reductase for NADP(H) by destabilizing the interaction of a moiety common to both coenzymes, i.e. the nicotinamide.  相似文献   

17.
A radioisotopic, enzymatic cycling procedure was used to measure NAD, NADH, NADP and NADPH in cultured human lymphocytes at 0, 24 and 48 h after exposure to phytohemagglutinin (PHA). During the 0–24 h period after PHA addition NAD and NADH were increased in both control and test cultures leading to a decrease in the NAD: NADH ratio. During the 24–48 h period increases in NAD and NADH occurred in test cultures in parallel with increased incorporation of [3H]TdR. No change in the NAD: NADH ratio was seen. The results indicate that the levels of NAD and NADH may be affected by the culture conditions and that increases in these compounds occur in stimulated cells during a time period in which DNA turnover is elevated and cell volume is increased but before extensive cell division.  相似文献   

18.
The sum of the amounts of NAD + NADH was determined from the same acid tissue extract with the aid of a highly specific radioimmunoassay for 5'-AMP. NAD was converted to 5'-AMP via ADP-ribose by alkaline treatment while NADH was converted first to ADP-ribose by incubation of the acid extract at 25 degrees C followed by alkaline conversion to 5'-AMP. Removal of phosphate groups in NADP and NADPH by treatment of the extracts with alkaline phosphatase extended the procedure to the quantification of NADP(H). When combined with enzymic analyses of the oxidized coenzyme forms, NAD/NADH and NADP/NADPH ratios could also be obtained from the same extracts. The sensitivity of the test allows quantification of pyridine nucleotides in the range of 0.1--10 pmol.  相似文献   

19.
A method is described which enables one to assay simultaneously the NAD- and NADP-linked reactions of dehydrogenases which can utilize both coenzymes. The method is based on the fact that the thionicotinamide analogs of NADH and NADPH absorb light maximally at 400 nm, a wavelength sufficiently far removed from the absorbance maximum of NADH and NADPH to permit measurements of the simultaneous reduction of NAD+ (or NADP+) and the thionicotinamide analog of NADP+ (or NAD+). Application of the method to glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides reveals differential effects of glucose 6-phosphate concentration on the NAD- and NADP-linked reactions catalyzed by this enzyme which can not be detected by conventional assay procedures and which may have regulatory significance.  相似文献   

20.
Kinetic measurements indicate that the energy-independent transhydrogenation of 3-acetylpyridine-NAD+ by NADPH in membranes of Escherichia coli follows a rapid equilibrium random bireactant mechanism. Each substrate, although reacting preferentially with its own binding site, is able to interact with the binding site of the other substrate to cause inhibition of enzyme activity. 5'-AMP (and ADP) and 2'-AMP interact with the NAD+- and NADP+-binding sites, respectively. Phenylglyoxal and 2,3-butanedione in borate buffer inhibit transhydrogenase activity presumably by reacting with arginyl residues. Protection against inhibition by 2,3-butanedione is afforded by NADP+, NAD+, and high concentrations of NADPH and NADH. Low concentrations of NADPH and NADH increase the rate of inhibition by 2,3-butanedione. Similar effects are observed for the inactivation of the transhydrogenase by tryptic digestion in the presence of these coenzymes. It is concluded that there are at least two conformations of the active site of the transhydrogenase which differ in the extent to which arginyl residues are accessible to exogenous agents such as trypsin and 2,3-butanedione. One conformation is induced by low concentrations of NADH and NADPH. Under these conditions the coenzymes could be reacting at the active site or at an allosteric site. The stimulation of transhydrogenase activity by low concentrations of the NADH is consistent with the latter possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号