首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate knee muscle activity patterns in experienced Tai-Chi (TC) practitioners during normal walking and TC stepping. The electromyographic (EMG) activity of vastus lateralis (VL), vastus medialis (VM), bicep femoris (BF), and gastrocnemius (GS) muscles of 11 subjects (five females and six males) during the stance phase of normal walking was compared to stance phase of a TC step. Knee joint motion was also monitored by using an Optotrak motion analysis system. Raw EMG was processed by root-mean-square (RMS) technique using a time constant of 50 ms, and normalized to maximum of voluntary contraction for each muscle, referred to as normalized RMS (nRMS). Peak nRMS and co-contraction (quantified by co-contraction index) during stance phase of a gait cycle and a TC step were calculated. Paired t-tests were used to compare the difference for each muscle group peak and co-contraction pair between the tasks. The results showed that only peak values of nRMS in quadriceps and co-contraction were significantly greater in TC stepping compared to normal walking (Peak values of nRMS for VL were 26.93% for normal walking and 52.14% for TC step, p=0.001; VM are 29.12% for normal walking and 51.93% for TC stepping, p=0.028). Mean co-contraction index for VL-BF muscle pairs was 13.24+/-11.02% during TC stepping and 9.47+/-7.77% in stance phase of normal walking (p=0.023). There was no significant difference in peak values of nRMS in the other two muscles during TC stepping compared to normal walking. Preliminary EMG profiles in this study demonstrated that experienced TC practitioners used relatively higher levels of knee muscle activation patterns with greater co-contraction during TC exercise compared to normal walking.  相似文献   

2.
The interpretation of the electromyogram (EMG) of dynamic contractions might be difficult because the movement per se introduces additional factors that could affect its characteristics. There is a lack of studies concerning the reproducibility of surface EMG registrations during dynamic contractions. The aim was to investigate the during-the-day reproducibility (using intra-class correlation; ICC) of the peak torque (PT) and the EMG variables (without removing the electrodes) of dynamic contractions. Ten healthy subjects performed three sets of 10 dynamic maximum right-knee extensions with a one-hour interval in between, using an isokinetic dynamometer and the PT was determined. EMG signals were recorded from the right vastus lateralis, rectus femoris and vastus medialis muscles using surface electrodes and the mean frequency of the power spectrum (MNF [Hz]) and the signal amplitude (RMS [microV]), were computed. The ability to relax in-between the maximum extensions was calculated as a ratio of the RMS during the passive flexion phase and the RMS during the active extension phase of each contraction cycle: the signal amplitude ratio (SAR). Both PT (ICC = 0.99) and RMS (ICC = 0.83-0.98) had good reproducibility. The reproducibility of MNF was good for all muscles when the mean of contraction nos.: 1-10 was used. Vastus lateralis had the highest ICC among the three muscles. The reproducibility of SAR was generally poor (ICC < 0.60). The present study showed good reproducibility for common EMG variables (MNF and RMS) obtained during maximum isokinetic contractions.  相似文献   

3.

Aim

The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue.

Methods

Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep.

Results

Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08).

Conclusion

Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution.  相似文献   

4.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

5.
The origin of the slow component (SC) of oxygen uptake kinetics, presenting during exercise above the ventilatory threshold (VT), remains unclear. Possible physiologic mechanisms include a progressive recruitment of type II muscle fibers. The purpose of this study was to examine alterations in muscle activity through electromyography (EMG) and mean power frequency (MPF) analysis during heavy cycling exercise. Eight trained cyclists (mean +/- S.E.; age = 30 +/- 3 years, height = 1771 +/- 4 cm, weight = 73.8 +/- 6.5 kg, VO2max = 4.33 +/- 0.28 l min(-1)) completed transitions from 20W to a workload equaling 50% of the difference between V(T) and VO2max. VO2 was monitored using a breath-by-breath measurement system, and EMG data were gathered from surface electrodes placed on the gastrocnemius lateralis and vastus lateralis oblique. Breath-by-breath data were time aligned, averaged, interpolated to 1-s intervals, and modeled with non-linear regression. Mean power frequency (MPF) and RMS EMG values were calculated for each minute during the exercise bout. Additionally, MPF was determined using both isolated EMG bursts and complete pedal revolutions. All subjects exhibited a VO2 SC (mean amplitude = 0.98 +/- 0.16 l min(-1)), yet no significant differences were observed during the exercise bout in MPF or RMS EMG data (p > 0.05) using either analysis technique. While it is possible that the sensitivity of EMG may be insufficient to identify changes in muscle activity theorized to affect the VO2 SC, the data indicated no relationship between MPF/EMG and the SC during heavy cycling.  相似文献   

6.
The separate contributions of the recruitment level and of the firing rate of the motor units on the soundmyogram and electromyogram time domain parameters were investigated during stimulation of the motor nerve of the cat gastrocnemius muscle. Upon orderly increase in the number of active motor units at a fixed firing rate, both the peak to peak amplitude (P-Pmax) and the root mean square (RMS) of the sound myogram increased. At full recruitment the increase in firing rate from 2.5 to 50 Hz induced an exponential decline in the P-Pmax. The RMS, however, followed this trend only from 15 to 50 Hz while showing an increase from 2.5 to 10 Hz. During simultaneous changes of recruitment and firing rate, the effect of increasing the number of motor units on the P-Pmax and RMS is dampened by the increasing firing rate. The peak to peak amplitude of the EMG compound action potential increased with the number of active motor units. Moreover, its amplitude was not influenced by the firing rate. The EMG RMS, however, increases as a function of the firing rate. The results indicate that both the number and the firing rate of the active motor units contribute to the determination of the soundmyogram characteristics. Moreover, the peculiar changes of the soundmyogram time domain properties, compared to the ones of the EMG, allow one to differentiate the influence of the motor units number and firing rate on the electrical and mechanical performance of the muscle when stimulated.  相似文献   

7.
The purpose of this investigation was to examine the effects of unilateral, isometric training of the forearm flexors on strength and the mechanomyographic (MMG) and electromyographic (EMG) responses of the biceps brachii in the trained and untrained limb at three joint angles. Seventeen adult females (mean age +/- SD = 21 +/- 2 years) were randomly assigned to a control (CTL; N=7) or a training (TRN; N=10) group. The TRN group performed isometric training of the non-dominant forearm flexors on a Cybex II Dynamometer at a joint angle such that the Cybex lever arm was positioned 60 degrees above the horizontal plane. The training consisted of 3 to 5 sets of 8, 6-second repetitions at 80% of maximal voluntary contraction 3 times per week for 8 weeks. The results indicated a significant increase in flexed arm circumference as well as isometric strength in the trained limb at all three joint angles. There were, however, no changes in MMG or EMG amplitude in the trained or untrained limb and no cross-training effect for strength or flexed arm circumference. These findings suggested that the increased strength may have been due to factors associated with hypertrophy, independent of neural adaptations in the biceps brachii. Furthermore, hypertrophy may have had counteractive effects on the MMG signal that could be responsible for the lack of a training-induced change in the MMG amplitude.  相似文献   

8.
The purpose of this study was to compare the acute neuromuscular fatigue during dynamic maximal strength and hypertrophic loadings, known to cause different adaptations underlying strength gain during training. Thirteen healthy, untrained males performed two leg press loadings, one week apart, consisting of 15 sets of 1 repetition maximum (MAX) and 5 sets of 10 repetition maximums (HYP). Concentric load and muscle activity, electromyography (EMG) amplitude and median frequency, was assessed throughout each set. Additionally, maximal bilateral isometric force and muscle activity was assessed pre-, mid-, and up to 30 min post-loading. Concentric load during MAX was decreased after set 10 (P<0.05), while the load was maintained throughout HYP. Both loadings caused large reductions in maximal isometric force (MAX=-30±6.4% vs. HYP=-48±9.7%, P<0.001). The decreased concentric and isometric strength during MAX loading was accompanied by reduced EMG amplitude (P<0.05). Conversely, hypertrophic loading caused decreased median frequency only during isometric contractions (P<0.01). During concentric contractions, EMG amplitude increased and median frequency decreased in HYP (P<0.01). Our results indicate reduced neural drive during MAX loading and more complex changes in muscle activity during HYP loading.  相似文献   

9.
The present study aimed to evaluate the effect of a resistance training program based on the electromyographic fatigue threshold (EMGFT, defined as the highest exercise intensity performed without EMG alterations), on the EMG amplitude (root mean square, RMS) and frequency (median frequency, MF) values for biceps brachii (BB), brachioradialis (BR), triceps brachii (TB) and multifidus (MT). Twenty healthy male subjects, (training group [TG], n = 10; control group [CG], n = 10), firstly performed isometric contractions, and after this, dynamic biceps curl at four different loads to determine the EMGFT. The TG training program used the BB EMGFT value (8 weeks, 2 sessions/week, 3 exhaustive bouts/session, 2 min rest between bouts). No significant differences were found for the isometric force after the training. The linear regression slopes of the RMS with time during the biceps curl presented significant decrease after training for the BB, BR and TB muscles. For the MT muscle, the slope and MF intercept values changed with training. The training program based on the EMGFT influenced EMG the amplitude more than EMG frequency, possibly related to the recruitment patterns of the muscles, although the trunk extensor muscles presented changes in the frequency parameter, showing adaptation to the training program.  相似文献   

10.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

11.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

12.
The purpose of this investigation was to determine the relationships for mechanomyographic (MMG) amplitude, MMG mean power frequency (MPF), electromyographic (EMG) amplitude, and EMG MPF versus power output during incremental cycle ergometry. Seventeen adults volunteered to perform an incremental test to exhaustion on a cycle ergometer. The test began at 50 W and the power output was increased by 30 W every 2 min until the subject could no longer maintain 70 rev min(-1). The MMG and EMG signals were recorded simultaneously from the vastus lateralis during the final 10 s of each power output and analyzed. MMG amplitude, MMG MPF, EMG amplitude, EMG MPF, and power output were normalized as a percentage of the maximal value from the cycle ergometer test. Polynomial regression analyses indicated that MMG amplitude increased (P<0.05) linearly across power output, but there was no change (P>0.05) in MMG MPF. EMG amplitude and MPF were fit best (P<0.05) with quadratic models. These results demonstrated dissociations among the time and frequency domains of MMG and EMG signals, which may provide information about motor control strategies during incremental cycle ergometry. The patterns for amplitude and frequency of the MMG signal may be useful for examining the relationship between motor-unit recruitment and firing rate during dynamic tasks.  相似文献   

13.
Capabilities of amplitude and spectral methods for information extraction from interference EMG signals were assessed through simulation and preliminary experiment. Muscle was composed of 4 types of motor units (MUs). Different hypotheses on changes in firing frequency of individual MUs, intracellular action potential (IAP) and muscle fibre propagation velocity (MFPV) during fatigue were analyzed. It was found that changes in amplitude characteristics of interference signals (root mean square, RMS, or integrated rectified value, IEMG) detected by intramuscular and surface electrodes differed. RMS and IEMG of surface detected interference signals could increase even under MU firing rate reduction and without MU synchronisation. IAP profile lengthening can affect amplitude characteristics more significantly than MU firing frequency. Thus, an increase of interference EMG amplitude is unreliable to reflect changes in the neural drive. The ratio between EMG amplitude and contraction response can hardly characterise the so-called 'neuromuscular efficiency'. The recently proposed spectral fatigue indices can be used for quantification of interference EMG signals. The indices are practically insensitive to MU firing frequency. IAP profile lengthening and decrease in MFPV enhanced the index value, while recruitment of fast fatigable MUs reduced it. Sensitivity of the indices was higher than that of indices traditionally used.  相似文献   

14.
This study quantified leg stiffness and vGRF measures for males and females using different stride lengths to run with four body borne loads (20, 25, 30, and 35 kg). Thirty-six participants (20 males and 16 females) ran at 4.0 m/s using either: their preferred stride length (PSL), or strides 15% longer (LSL) and shorter (SSL) than PSL. Leg stiffness and vGRF measures, including peak vGRF, impact peak and loading rate, were submitted to a RM ANOVA to test the main effect and interactions of load, stride length, and sex. Leg stiffness was greater with the 30 kg (p = 0.016) and 35 kg (p < 0.001) compared to the 20 kg load, but decreased as stride lengthened from SSL to PSL (p < 0.001) and PSL to LSL (p < 0.001). Males exhibited greater leg stiffness than females with SSL (p = 0.029). Yet, males decreased leg stiffness with each increase in stride length (p < 0.001; p < 0.001), while females only decreased leg stiffness between PSL and LSL (p = 0.014). Peak vGRF was greater with the addition of body borne load (p < 0.001) and increase in stride length (p < 0.001). Both impact peak and loading rate were greater with the 30 kg (p = 0.034; p = 0.043) and 35 kg (p = 0.004; p = 0.015) compared to the 20 kg load, and increased as stride lengthened from SSL to PSL (p = 0.001; p = 0.004) and PSL to LSL (p < 0.001; p < 0.001). Running with body borne load may elevate injury risk by increasing leg stiffness and vGRFs. Injury risk may further increase when using longer strides to run with body borne load.  相似文献   

15.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

16.
The present study analyzes the changes in acceleration produced by swimmers before and after fatiguing effort. The subjects (n = 15) performed a 25-m crawl series at maximum speed without fatigue, and a second series with fatigue. The data were registered with a synchronized system that consisted of a position transducer (1 kHz) and a video photogrametry (50 Hz). The acceleration (ms(-2)) was obtained by the derivative analysis of the variation of the position with time. The amplitude in the time domain was calculated with the root mean square (RMS); while the peak power (PP), the peak power frequency (PPF) and the spectrum area (SA) were calculated in the frequency domain with Fourier analysis. On the one hand, the results of the temporal domain show that the RMS change percentage between series was 67.5% (p < 0.001). On the other hand, PP, PPF, and SA show significant changes (p < 0.001). PP and SA were reduced by 63.1% and 59.5%, respectively. Our results show that the acceleration analysis of the swimmer with Fourier analysis permits a more precise understanding of which propulsive forces contribute to the swimmer performance before and after fatigue appears.  相似文献   

17.
The purpose of this study was to examine whether and how cycle time duration affects energy expenditure and substrate utilization during whole-body vibration (WBV). Nine men performed 3 squatting exercises in execution frequency cycles of 6, 4, and 2 seconds to 90 degrees knee flexion with vibration (Vb+) (frequency was set at 30 Hz and the amplitude of vibration was 4 mm) and without vibration (Vb-) during 3 minutes, each with an additional load of 30% of the subject's body weight. A 2-way analysis of variance for VO2 revealed a significant vibration condition main effect (p < 0.001) and a cycle time duration effect (p < 0.001). When differences were analyzed by Fisher's LSD test, cycle time duration of 2 seconds was significantly different from 4 and 6 seconds, both in Vb+ and Vb-. Total energy expenditure (EE(tot)), carbohydrate oxidation rate (EE(cho)), and fat oxidation rate (EE(fat)) demonstrated a significant vibration condition main effect (EE(tot): p < 0.01; EE(cho): p < 0.001; EE(fat): p < 0.001) and cycle time duration main effect (EE(tot) and EE(cho): p < 0.001; EE(fat): p < 0.01). EE(tot), EE(cho), and EE(fat) post hoc comparisons indicated that values for the 2-second test significantly differed from 4 and 6 seconds when compared in the same vibration condition. VO2 and EE values were greater in Vb+ than in Vb- conditions with the same cycle time duration. Our study confirms that squatting at a greater frequency helps to maximize energy expenditure during exercise with or without vibration. Therefore, cycle time duration must be controlled when vibration exercise is prescribed.  相似文献   

18.
The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.  相似文献   

19.
The aim of this study was to discriminate fatigue of upper limb muscles depending on the external load, through the development and analysis of a muscle fatigue index. Muscle fatigue is expressed by a fatigue index based on an amplitude parameter (calculated in the time domain) and a fatigue index based on a frequency parameter (a parameter calculated in the frequency domain). The fatigue index involves a regression function that describes changes in the EMG signal parameter, time elapsing before muscle fatigue and the probability of specific trends in changes in EMG parameters for the population under study.

The experimental study covered a group of 10 young men. During the study, they exerted force at a specific level and for a specific time in 12 load variants. During the study, EMG signals from four muscles of the upper limb were recorded (trapezius pars descendents, biceps brachii caput breve, extensor carpi radialis brevis, flexor carpi ulnaris). For each variant and for each examined muscles, the value of the fatigue index was calculated. Values of that index quantitatively expressed fatigue of a specific muscle in a specific load variant.

A statistical analysis indicated variation in the fatigue of the biceps brachii caput breve, extensor carpi radialis brevis, and flexor carpi ulnaris muscles depending on the external load (load variant) according to the task performed with the upper limb.

The study demonstrated usefulness of the fatigue index in expressing quantitatively muscle fatigue and in discriminating muscle fatigue depending on the external load.  相似文献   


20.
The purpose of this study was to describe an electromyogram (EMG) pattern during a submaximal eccentric task in 7 subjects adapted to high-force chronic eccentric exercise and 6 subjects naive to eccentric exercise. The EMG in all subjects was quantified during identical submaximal (200 W) eccentric and concentric cycle ergometry tasks. The EMG of the eccentrically adapted subjects was decreased (p < 0.05) compared to the eccentrically naive subjects, in duration, amplitude, and intensity as evidenced by a decreased EMG during the pedal cycle. This decrease may be one component of the protective effect that results from progressively increasing repeated bouts of eccentric muscle work. Clients and patients transitioning to rigorous overload training should become adapted to high eccentric loads and forces to avoid injury and a potential delay in their strength and conditioning training regimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号