首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)‐12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti‐cancer agent; however, clinical trials involving IL‐12 have been unsuccessful due to toxic side‐effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model. SCCVII cells that were transduced to produce IL‐12 at different concentrations were then isolated. Subcutaneous injection of parental SCCVII cells results in tumour development, while a mixture of IL‐12‐producing and non‐producing cells results in tumour clearance. Interestingly, when comparing mice injected a mixture of SCCVII and either high IL‐12‐producing tumour cells or low IL‐12‐producing tumour cells, we observed that mixtures containing small amounts of high producing cells lead to tumour clearance, whereas mixtures containing large amounts of low producing cells fail to elicit protection, despite the production of equal amounts of total IL‐12 in both mixtures. Furthermore, immunizing mice with IL‐12‐producing cells leads to the establishment of both local and systemic immunity against challenge with SCCVII. Using depletion antibodies, it was shown that both CD4+ and CD8+ cells are crucial for therapy. Lastly, we have established cell clones of other solid tumour cell lines (RM‐1, LLC1 and moto1.1) that produce IL‐12. Our results show that the delivery of IL‐12 by cancer cells is an effective route for immune activation.  相似文献   

2.
Linkage of doxorubicin (Dox) to a water-soluble synthetic N-(2-hydroxypropyl)methacrylamide copolymer (PHPMA) eliminates most of the systemic toxicity of the free drug. In EL-4 lymphoma-bearing C57BL/6 mice, a complete regression of pre-established tumours has been achieved upon treatment with Dox–PHPMA–HuIg conjugate. The treatment was effective using a range of regimens and dosages, ranging from 62.5 to 100% cured mice treated with a single dose of 10–20 mg of Dox eq./kg, respectively. Fractionated dosages producing lower levels of the conjugate for a prolonged time period had substantial curative capacity as well. The cured mice developed anti-tumour protection as they rejected subsequently re-transplanted original tumour. The proportion of tumour-protected mice inversely reflected the effectiveness of the primary treatment. The treatment protocol leading to 50% of cured mice produced only protected mice, while no mice treated with early treatment regimen (i.e. starting on day 1 after tumour transplantation) rejected the re-transplanted tumour. Exposure of the host to the cancer cells was a prerequisite for developing protection. The anti-tumour memory was long lasting and specific against the original tumour, as the cured mice did not reject another syngeneic tumour, melanoma B16-F10. The immunity was transferable to naïve recipients in in vivo neutralization assay by spleen cells or CD8+ lymphocytes derived from cured animals. We propose an effective treatment strategy which eradicates tumours without harming the protective immune anti-cancer responses.  相似文献   

3.
Summary This study shows that local tumour treatment with low-dose recombinant interleukin-2 (IL-2) can mediate rejection of a large distant solid tumour. When SL2 lymphoma cells were injected intraperitoneally (i.p.) in syngeneic DBA/2 mice on day 0, 70% of these mice were cured by daily i. p. injections with 20 000 units IL-2 on days 10–14. After injecting mice with SL2 both i.p. and subcutaneously (s. c.) on the flank, 50% of the mice treated i.p. with low-dose IL-2 rejected both the i.p. tumour and the large distant s.c. tumour. In contrast, i.p. IL-2 treatment on days 10–14 cured fewer than 10% of the mice bearing only a s. c. SL2 tumour. The described IL-2 immunotherapy also caused systemic tumour rejection in mice bearing both ascitic and solid P815 mastocytoma. Thus it was shown that low-dose IL-2 can induce systemic tumour rejection, when injected at a site of tumour growth. Interleukin-2-induced rejection of s. c. SL2 tumour was highly specific, as mice that were rejecting i.p. and solid s. c. SL2 lymphoma did not reject solid P815 mastocytoma, which was injected s.c. simultaneously on the other flank. Furthermore, solid s.c. tumours consisting of mixtures of SL2 and P815 were not rejected in mice that rejected i.p. SL2 or P815. We conclude that intratumoral injections of low-dose IL-2 can enhance an ongoing weak immune reaction against the tumour resulting in systemic tumour rejection.  相似文献   

4.
Deregulation of apoptosis signalling is commonly found in cancer and results in resistance to cytotoxic therapies. Immunotherapy is a promising strategy to eliminate resistant cancer cells. The transfer of T-lymphocytes during allogeneic stem cell transplantation is clinically explored to induce a 'graft-versus-tumor' effect (GvT). Cytotoxic T-lymphocytes (CTL), which are major effectors of GvT, eliminate cancer cells by inducing apoptosis via multiple parallel pathways. Here, we study in vitro and in vivo the susceptibility of murine cancer cells engineered to express single antiapoptotic genes to CTL-mediated cytotoxicity. Interestingly, we find that single inhibitors of caspase activation, such as BCL-XL or dominant-negative mutants of FADD and caspase-9, protect cancer cells against antigen-specific CTL in vitro. Moreover, expression of BCL-XL impairs the growth suppression by adoptively transplanted CTL of established tumours in vivo. Hence, apoptosis defects that provide protection to cytotoxic cancer therapies can confer crossresistance to immunotherapy by tumour-reactive CTL.  相似文献   

5.
Mouse studies have shown that the immune system can reject tumours, and the identification of tumour antigens that can be recognized by human T cells has facilitated the development of immunotherapy protocols. Vaccines against cancer aim to induce tumour-specific effector T cells that can reduce the tumour mass, as well as tumour-specific memory T cells that can control tumour relapse. Owing to their capacity to regulate T-cell immunity, dendritic cells are increasingly used as adjuvants for vaccination, and the immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer. A better understanding of how dendritic cells regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.  相似文献   

6.
Cytokine-induced killer (CIK) cells are T cell derived ex vivo expanded cells with both NK and T cell properties. They exhibit potent anti-tumor efficacy against various malignancies in preclinical models and have proven safe and effective in clinical studies. We combined CIK cell adoptive immunotherapy with IL-12 cytokine immunotherapy in an immunocompetent preclinical breast cancer model. Combining CIK cells with IL-12 increased anti-tumor efficacy in vivo compared to either therapy alone. Combination led to full tumor remission and long-term protection in 75% of animals. IL-12 treatment sharply increased the anti-tumor efficacy of short-term cultured CIK cells that exhibited no therapeutic effect alone. Bioluminescence imaging based in vitro cytotoxicity and in vivo homing assays revealed that short-term cultured CIK cells exhibit full cytotoxicity in vitro, but display different tumor homing properties than fully expanded CIK cells in vivo. Our data suggest that short-term cultured CIK cells can be “educated” in vivo, producing fully expanded CIK cells upon IL-12 administration with anti-tumor efficacy in a mouse model. Our findings demonstrate the potential to improve current CIK cell-based immunotherapy by increasing efficacy and shortening ex vivo expansion time. This holds promise for a highly efficacious cancer therapy utilizing synergistic effects of cytokine and cellular immunotherapy.  相似文献   

7.
Intratumoral electroporation (IT-EP) with IL-12 cDNA (IT-EP/IL12) can lead to the eradication of established B16 melanoma tumors in mice. Here, we explore the immunological mechanism of the antitumor effects generated by this therapy. The results show that IT-EP/IL12 applied only once resulted in eradication in 70% animals with large established B16 tumors. Tumor eradication required the participation of CD8+ T cells, but not CD4+ T cells and NK cells. IT-EP/IL12 induced antigen-specific CD8+ T cell responses against the immunodominant Trp2(180-188) epitope and generated a systemic response, resulting in significant therapeutic effects against distal, untreated tumors. The therapeutic effect of IT-EP/IL12 was absent in perforin-deficient mice, indicating that tumor elimination occurred through conventional perforin/granzyme lysis by CTLs. Moreover, this therapy induced some degree of immunological memory that protected approximately one-third of the cured mice against a subsequent tumor challenge. Moreover, antitumor efficacy and long-term protection against B16 were significantly improved by concurrent Trp2 peptide immunization through more induction of Ag-specific CTL responses and more attraction of IFN-γ-expressing CD8+ T cells into tumor sites. The antitumor effect of IT-EP/IL12 required the participation of IFN-γ, which was shown to induce MHC class I expression on B16 cells and increase the lytic activity of the CD8+ CTL generated by IT-EP/IL12. The results from these animal studies may help in the development of IT-EP/IL12 for cancer patients.  相似文献   

8.
The immediate early response gene X-1 (IEX-1) is involved in regulation of various cellular processes including proliferation, apoptosis in part by controlling homeostasis of reactive oxygen species (ROS) at mitochondria. The present study shows reduced inflammatory responses and colorectal cancer in IEX-1 knockout (KO) mice treated with azoxymethane/dextran sulfate sodium (DSS). However, DSS induced worse colitis in RAG(-/-)IEX-1(-/-) double KO mice than in RAG and IEX-1 single KO mice, underscoring an importance of T cells in IEX-1 deficiency-induced protection against colon inflammation. Lack of IEX-1 promoted the differentiation of interleukin (IL)-17-producing T cells, concomitant with upregulation of Gαi2 expression, a gene that is well-documented for its role in the control of inflammation in the colon. In accordance with this, T-helper 17 (T(H)17) cell differentiation was compromised in the absence of Gαi2, and deletion of Gαi2 in T cells alone aggravated colon inflammation and colorectal cancer development after azoxymethane/DSS treatment. Null mutation of IEX-1 also enhanced both proliferation and apoptosis of intestinal epithelial cells (IEC) after injury. A potential impact of this altered IEC turnover on colon inflammation and cancer development is discussed. These observations provide a linkage of IEX-1 and Gαi2 expression in the regulation of T(H)17 cell differentiation and suggest a previously unappreciated role for IEX-1 in the control of colon epithelial homeostasis.  相似文献   

9.
10.
Recent studies in HER-2/neu-targeted immunotherapy demonstrated that polymorphonuclear neutrophils (PMN) mediated Ab-dependent cellular cytotoxicity against HER-2/neu-positive breast cancer cell lines. However, the mechanism of cell death remained unclear. We used several assays to analyze the induction of apoptosis in the breast cancer cell line SK-BR-3 via PMN-dependent Ab-dependent cellular cytotoxicity. In the presence of the HER-2/neu Ab 520C9 and PMN from healthy donors, apoptosis occurred as detected by annexin V binding and disappearance of euploid SK-BR-3 nuclei, which can be differentiated from PMN nuclei by their increased DNA contents. Apoptosis induction was observed with E:T cell ratios as low as 10:1. Laser scanning fluorescence microscopy of TUNEL tumor cells or staining for cleaved cytokeratin-18 further confirmed apoptosis of the SK-BR-3 breast cancer cells. Killing via 520C9 was dependent on the interaction with FcR on PMN, because 1) F(ab')(2) fragments of 520C9 mediated no cytotoxicity, 2) target cell death was influenced by a biallelic polymorphism of FcgammaRIIa on the effector cells, and 3) a bispecific Ab against HER-2/neu and the IgA receptor (FcalphaRI) expressed on effector cells significantly induced apoptosis. Thus, PMN induce Ab-dependent apoptosis against human breast cancer cells targeted with HER-2/neu-directed mAbs or FcR directed bispecific Abs.  相似文献   

11.
Parathyroid hormone-related protein (PTHrP) is a key component in breast development and breast tumour biology. PTHrP has been discovered as a causative agent of hypercalcaemia of malignancy and is also one of the main factors implicated in breast cancer mediated osteolysis. Clinical studies have determined that PTHrP expression by primary breast cancers was an independent predictor of improved prognosis. Furthermore, PTHrP has been demonstrated to cause tumour cell death both in vitro and in vivo. Apo2L/TRAIL is a promising new anti-cancer agent, due to its ability to selectively induce apoptosis in cancer cells whilst sparing most normal cells. However, some cancer cells are resistant to Apo2L/TRAIL-induced apoptosis thus limiting its therapeutic efficacy. The effects of PTHrP on cell death signalling pathways initiated by Apo2L/TRAIL were investigated in breast cancer cells. Expression of PTHrP in Apo2L/TRAIL resistant cell line MCF-7 sensitised these cells to Apo2L/TRAIL-induced apoptosis. The actions of PTHrP resulted from intracellular effects, since exogenous treatment of PTHrP had no effect on Apo2L/TRAIL-induced apoptosis. Apo2L/TRAIL-induced apoptosis in PTHrP expressing cells occurred through the activation of caspase-10 resulting in caspase-9 activation and induction of apoptosis through the effector caspases, caspase-6 and -7. PTHrP increased cell surface expression of Apo2L/TRAIL death receptors, TRAIL-R1 and TRAIL-R2. Antagonistic antibodies against the death receptors demonstrated that Apo2L/TRAIL mediated its apoptotic signals through activation of the TRAIL-R2 in PTHrP expressing breast cancer cells. These studies reveal a novel role for PTHrP with Apo2L/TRAIL that maybe important for future diagnosis and treatment of breast cancer.  相似文献   

12.
13.
Cancer is a widespread disease, with half of all men and one-third of all women in the United States developing cancer during their lifetime. The efficacy of many cancer treatments including radiotherapy, chemotherapy and immunotherapy is due to their ability to induce tumor cell apoptosis. Recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is currently being developed as a cancer therapeutic since it selectively induces apoptosis in a variety of transformed cells, but not in most normal cells. Agonistic monoclonal antibodies (mAbs) specific for human death-inducing TRAIL receptors (DR4 or DR5) are also being actively pursued. Importantly, in experimental mice, synergistic anti-tumor effects have been observed with a combination treatment of agonistic mAb against DR5 together with either IL-21 or agonistic mAbs against CD40 and CD137. Together, these findings suggest that antibody-based therapies that cause tumor cell apoptosis and promote T cell memory or function may be effective in fighting cancer.  相似文献   

14.
Irinotecan is a kind of alkaloid with antitumour activity, but its low solubility and high toxicity limit its application. Epigallocatechin-3-gallate (EGCG) is one of the main bioactive components in tea. The epidemiological investigation and animal and cell experiments show that EGCG has a preventive and therapeutic effect on many kinds of tumours. Here, colorectal cancer cells RKO and HCT116 were employed, and the CCK8 proliferation test was used to screen the appropriate concentration of EGCG and irinotecan, and the effects of single and/or combined drugs on migration, invasion, DNA damage, cell cycle and autophagy of tumour cells were investigated. The results showed that EGCG combined with irinotecan (0.5 μmol L) not only had a stronger inhibitory effect on tumour cells than EGCG or irinotecan alone but also prevented tumour cell migration and invasion. EGCG alone did not cause DNA damage in colorectal cancer cells, but its combination with irinotecan could induce S or G2 phase arrest by inhibiting topoisomerase I to cause more extensive DNA damage. EGCG also induced apoptosis by promoting autophagy with irinotecan synergistically. These results indicated that EGCG in combination with irinotecan could be a promising strategy for colorectal cancer.  相似文献   

15.
16.
Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.  相似文献   

17.
The 52-aminoacid peptide adrenomedullin (AM) is expressed in the normal and malignant prostate. We have previously shown that prostate cancer cells produce and secrete AM, which acts as an autocrine growth inhibitory factor. We have evaluated in the present study the role of AM in prostate cancer cell apoptosis, induced either by serum deprivation or treatment with the chemotherapeutic agent etoposide (which acts as an inhibitor of topoisomerase II). For this purpose we over-expressed AM in PC-3, DU 145 and LNCaP cells, which were transfected with an expression vector carrying AM. We also treated the parental cell lines with synthetic AM in normal culture conditions and in conditions of induced-apoptosis. After serum removal, AM prevented apoptosis in DU 145 and PC-3 cells, but not in LNCaP cells. When treated with etoposide, AM prevented apoptosis in PC-3 and LNCaP cells, but not in DU 145 cells. Cell cycle analysis demonstrated a significant decrease in the percentage of AM-overexpressing PC-3 cells in the subG0/G1 phase after treatment with etoposide, as compared to the percentage of mock-transfected PC-3 treated cells. Western blot showed that protein levels of phosphorylated ERK1/2 increased in parental PC-3 cells after treatment with etoposide. In PC-3 cells overexpressing AM, phosphorylated ERK1/2 basal levels were lower than basal levels of parental PC-3 cells, and treatment with etoposide did not result in such an increase. Etoposide produced a significant increase in cleaved PARP in parental PC-3 cells. However, PC-3 clones overexpressing AM that were treated with etoposide only showed a mild increase in fragmented PARP. The ratio Bcl-2/Bax was reduced in parental or mock-transfected PC-3 cells after treatment with etoposide. On the contrary, this ratio was not reduced in PC-3 clones with AM overexpression that were treated with etoposide. All these data demonstrate that AM plays a protective role against induced apoptosis in prostate cancer cells. These results may have important implications in prostate cancer resistance to chemotherapeutic agents.  相似文献   

18.
Betulinic acid (BA) is a pentacyclic triterpenoids extracted from birch with a wide range of biological properties. Recent studies have shown that BA has significant cytotoxicity to various types of human cancer cells, and shows potential in cancer treatment. However, the efficacy of BA on human colorectal cancer tumor cells is still unclear. The purpose of our study was to evaluate the anti-cancer activity of BA in human colorectal cancer cells in vitro and in vivo to investigate the possible mechanism. In this experiment, we found that BA inhibited colorectal cancer cell lines in vitro with a time-dependent and dose-dependent manner. Moreover, BA could induce cell apoptosis by upregulating expression of Bax and cleaved caspase-3 and downregulating protein of Bcl-2. BA could increase the production of reactive oxygen species and reduce mitochondrial membrane potential of cancer cell, suggesting that BA induced cancer cells apoptosis by mitochondrial mediated pathways. Furthermore, BA significantly inhibited the migration and invasion of colorectal cancer cells, reduced the expression of matrix metalloproteinase (MMPs) and increased the expression of MMPs inhibitor (TIMP-2). In addition, the growth of tumor was significantly suppressed by intraperitoneal administration of 20 mg/kg/day of BA in a xenograft tumor mouse model of HCT-116. Histopathological and immunohistochemical analysis showed that MMP-2+ cells and Ki-67+ cells were reduced and cleaved caspase-3+ cells were increased in tumor tissues of mice after BA administration. The results showed that BA not only promoted the apoptosis of colorectal cancer cells, but also inhibited the metastasis of cancer cells. Our results suggest that BA can be a potential natural drug to inhibit the growth and metastasis of colorectal cancer.  相似文献   

19.
Important contributions that stimulated studies in cancer immunotherapy included: (1) the discovery of tumour-associated antigens; (2) the observation that infection with bacille Calmette-Guérin (BCG) in animals was protective against tumour challenge; and (3) the observation that immunodepression due either to malignant disease or to treatment of the disease, was, in some instances, related to prognosis. Immunotherapy trials with microbial agents have involved attempts to obtain a local effect by injecting the agent into the tumour or into the region of the tumour and to obtain a "systemic" effect distant from the site of injection. Trials with active specific immunotherapy involving tumour cells or tumour cell extracts have frequently involved the combination of these specific agents with a nonspecific adjuvant such as BCG. Recent studies with thymosin and levamisole in patients with lung cancer and other types of malignant disease have shown prolonged survival in the groups receiving immunotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号