首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria prepared in small scale from skeletal muscle were studied with respiration measurements and low temperature spectroscopy. The method of preparation was developed for 25–100 mg tissue with pigeon breast muscle as model organ. The yield was 40%. Data collected during the developmental work were used to evaluate criteria of mitochondrial quality. The cytochrome c conservation, i.e. cytochrome c per mitochondrial quantity in the preparation relative to that in the tissue, is a most useful test parameter. It is bounded between 0–100%. Proportionality between the state 3 rate and the cytochrome c conservation was not rejected by statistical tests. The respiratory control ratio (RCR) was also highly correlated to the cytochrome c conservation. These correlations might be extrapolated to 100% conservation to give hypothetical tissue values. The cause for the correlations is discussed. The P/O ratio showed only weak dependence on the cytochrome c conservation and the state 4 rate s howed no dependence. Other, rather insensitive test parameters are also discussed. The pigeon breast muscle mitochondria isolated by the final method showed cytochrome c conservation of 73 ± 9% (n = 16). They are compared with pig biceps femoris mitochondria prepared by the same method. The two types of mitochondria show many similarities. Some differences may be explained by a different amount of inner mitochondrial membrane relative to mitochondrial protein. The pig tissue contains ten times less mitochondrial protein than the pigeon tissue does. (Mol Cell Biochem 174: 55–60, 1997)  相似文献   

2.
Phosphocellulose chromatography of pigeon leg muscle extract revealed the existence of two well-separated forms of AMP deaminase. This was in contrast to the pigeon breast muscle extract, which yielded only one form. The two leg muscle enzyme isoforms manifested similar kinetic and regulatory properties. They were activated by very low concentration of potassium ions and demonstrated similar patterns of pH and effector dependence. At pH 6.5, as well as at other pH values tested. ADP and ATP slightly stimulated, whereas GTP and orthophosphate inhibited the two molecular forms of pigeons leg muscle enzyme. Surprisingly, the molecular form of AMP deaminase present in pigeon breast muscle was inhibited by ATP at all pH values tested. The kinetic and regulatory properties of the three molecular forms of pigeon skeletal muscle AMP deaminase examined do not resemble those which have been described for pigeon heart muscle enzyme.  相似文献   

3.
Internal electron transfer within succinate-cytochrome C reductase from pigeon breast muscle mitochondria was followed by the pulse radiolytic technique. The electron equivalent is transferred from an unknown donor to b type cytochrome(s) in a first order process with a rate constant of: 660±150 s?1. This process might be the rate determining step of electron transfer in mitochondria, since it is similar in rate to the turn over number of the mitochondrial respiratory chain.  相似文献   

4.
The mitochondrial ATPase inhibitor proteins--the Pullman-Monroy inhibitor (PMI) and the Ca(2+)-binding protein (CaBI)--have a wide distribution, both being present in mitochondria of bovine heart and kidney, rat liver and brain, two mitochondrial populations of rabbit skeletal muscle, and mitochondria from human fibroblasts and the human breast cancer cell line T-47-D. The ratio of CaBI to PMI was highest in heart and skeletal muscle mitochondria. The subsarcolemmal fraction of skeletal muscle had 2.6-times as much CaBI as did the intermyofibrillar. The ratio of CaBI to PMI in the mitochondria of the other normal tissues and fibroblasts was close to 1. In contrast, mitochondria from T-47D cells had 1.5-times as much PMI as CaBI whilst mitochondria from fibroblasts from a patient with Luft's disease showed a virtual lack of PMI. The specific ATPase, ATP-synthetase and succinate dehydrogenase activities of the Luft's mitochondria were, however, in the normal range. The specific ATP synthetase activity of the T-47D cells was significantly higher than normal. We conclude that tissues like heart and skeletal muscle which experience wide fluctuations in intracellular Ca2+ have a greater need for CaBI. Why lack of PMI could lead to 'loose' coupling of oxidative phosphorylation in skeletal muscle of Luft's patients, but not in fibroblasts is discussed.  相似文献   

5.
Dystrophic chicken breast muscle mitochondria contain significantly less mitochondrial creatine kinase than normal breast muscle mitochondria. Breast muscle mitochondria from normal 16- to 40-day-old chickens contain approximately 80 units of mitochondrial creatine kinase per unit of succinate:INT (p-iodonitrotetrazolium violet) reductase, a mitochondrial marker, while dystrophic chicken breast muscle mitochondria contain 36-44 units. Normal chicken heart muscle mitochondria contain about 10% of the mitochondrial creatine kinase per unit of succinate:INT reductase as normal breast muscle mitochondria. The levels in heart muscle mitochondria from dystrophic chickens are not affected significantly. Evidence is presented which shows that the reduced level of mitochondrial creatine kinase in dystrophic breast muscle mitochondria is responsible for an altered creatine linked respiration. First, both normal and dystrophic breast muscle mitochondria respire with the same state 3 and state 4 respiration. Second, the post-ADP state 4 rate of respiration of normal breast muscle mitochondria in the presence of 20 mM creatine continues at the state 3 rate. However, the state 4 rate of dystrophic breast muscle mitochondria and mitochondria from other muscle types with a low level of mitochondrial creatine kinase, such as heart muscle and 5-day-old chicken breast muscle, is slower than the state 3 rate. Third, dystrophic breast mitochondria synthesize ATP at the same rate as normal breast muscle mitochondria but rates of creatine phosphate synthesis in 20-50 mM Pi are reduced significantly. Finally, increasing concentrations of Pi displace mitochondrial creatine kinase from mitoplasts of normal and dystrophic breast muscle mitochondria with the same apparent KD, indicating that the outer surface of the inner mitochondrial membrane and the mitochondrial creatine kinase from dystrophic muscle are not altered.  相似文献   

6.
This study was conducted to determine function and defects in electron transport in muscle mitochondria of meat chickens (broilers) with pulmonary hypertension syndrome (PHS). The respiratory control ratio (RCR, indicative of respiratory chain coupling) was higher in the control than in PHS breast and heart muscle mitochondria, but there were no differences in the ADP/O (an index of oxidative phosphorylation). Sequential additions of ADP improved the RCR in the control breast muscle mitochondria and the ADP/O in PHS breast and heart muscle mitochondria. Basal hydrogen peroxide production, (an indicator of electron leak), was higher in PHS breast and heart muscle mitochondria than in controls and differences in electron leak in PHS mitochondria were magnified by inhibiting electron transport at Complex I and III (cyt b(562)). Complex I activity was lower in PHS heart mitochondria but there was no difference in Complex II activity. Thus, compared to controls, PHS mitochondria exhibited site-specific defects in electron transport within Complex I and III that could contribute to lower respiratory chain coupling. Additionally, it appears that healthy broilers may exhibit higher basal levels of electron leak compared to other avian species. Together, these findings provide insight into inefficient cellular use of oxygen that may contribute to the development of PHS in broilers.  相似文献   

7.
Summary Smooth muscle from the pigeon gizzard and intestine, and quail gizzard were investigated using ultrastructural morphometric analysis and compared on the basis of volume percent mitochondria, dense bodies, sarcoplasmic reticulum, number of mitochondria/m2, and fiber diameter. One-way analysis of variance tests showed significant differences in (1) volume percent mitochondria between pigeon intestine and quail gizzard and between pigeon and quail gizzards; (2) mitochondrial number between all three muscles; and (3) fiber diameter between pigeon gizzard and intestine and pigeon intestine and quail gizzard.  相似文献   

8.
In the present study we examined the regulation of the cardiac muscle mitochondrial ATPase both in situ and in vitro in intact and sonicated mitochondria from rabbit, pigeon, and rat. We chose to study these three species because each is representative of one of the three classes into which all species thus far studied may be placed with respect to the in situ activity of their cardiac muscle mitochondrial ATPase inhibitor and with respect to the amount of ATPase inhibitor present in their cardiac muscle mitochondria (1). Class A species (rabbit) contain a full complement of ATPase inhibitor and show a marked ATPase inhibition during ischemia. Class B species (pigeon) also contain a full complement of inhibitor but exhibit only a low level of ATPase inhibition in situ. Class C species (rat) contain only low levels of inhibitor and, like class B species, don't appear to utilize the inhibitor they possess during ischemia in situ. We found that, while hearts from all three species developed a marked cytosolic acidosis during ischemia, only rabbit exhibited a marked ATPase inhibition in situ. In in vitro experiments in which matrix pH values close to 6.2 and delta psi values close to zero were measured in intact mitochondria from all three species, matrix pH appeared to be an important factor regulating ATPase inhibition in rabbit, but it had little effect upon ATPase--inhibitor interaction in pigeon and rat despite the lack of membrane potential. However, a pH-dependent further release of ATPase inhibitor was observed in sonicated pigeon heart mitochondria only. This latter observation suggests that, while slow heart-rate heart mitochondria appear to be designed for ATPase down regulation during ischemia by inhibitor binding to the ATPase, fast heart-rate heart mitochondria appear to be designed primarily for ATPase up regulation by a further release of inhibitor from the enzyme.  相似文献   

9.
Studies were carried out to determine the level of ascorbate-Fe2+ dependent lipid peroxidation of mitochondria and microsomes isolated from liver and heart of rat and pigeon. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria and microsomes from rat liver than in the same organelles obtained from pigeon. In both mitochondria and microsomes from liver of both species a significant decrease of arachidonic acid was observed during peroxidation. The rate C18:2 n6/C20:4 n6 was 4.5 times higher in pigeon than in rat liver. This observation can explain the differences noted when light emission and unsaturation index of both species were analysed. A significant decrease of C18:2 n6 and C20:4 n6 in pigeon liver mitochondria was observed when compared with native organelles whereas in pigeon liver microsomes only C20:4 n6 diminished. In rat liver mitochondria only arachidonic acid C20:4 n6 showed a significant decrease whereas in rat liver microsomes C20:4 n6 and C22:6 n3 decreased significantly. However changes were not observed in the fatty acid profile of mitochondria and microsomes isolated from pigeon heart. In the heart under our peroxidation conditions the fatty acid profile does not appear to be responsible for the different susceptibility to the lipid peroxidation process. The lack of a relationship between fatty acid unsaturation and sensitivity to peroxidation observed in heart suggest that other factor/s may be involved in the protection to lipid peroxidation in microsomes and mitochondria isolated from heart.  相似文献   

10.
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.  相似文献   

11.
12.
The contribution of nyoglobin to the oxygen uptake of red skeletal muscle was estimated from the difference in oxygen uptake with and without functional myoglobin. The oxygen uptake of bundles (25 mm long, 0.5 mm mean diameter) of muscle fibers teased from pigeon breast muscle was measured in families of steady states of oxygen pressure from 0 to 250 mm Hg. The oxygen-binding function of myoglobin, in situ in muscle fiber bundles, was abolished by treatment with nitrite of hydroxylamine, which convert oxymyoglobin in situ to high spin ferric myoglobin, or with phenylhydrazine, which converts oxymyoglobin to denatured products, or with 2-hydroxyethylhydrazine, which appears to remove myoglobin from the muslce. The oxygen uptake was again measured. At higher oxygen pressure, where oxygen availability does not limit the respiration of the fiber bundles, oxygen uptake is not affected by any of the four reagents, which is evidence that mitochondrial oxygen uptake is not impaired. At lower oxygen pressure, where oxygen uptake is one-half maximal, the steady state oxygen consumption is roughly halved by abolishing functional myoglobin. Under the steady state conditions studied, the storage function of myoglobin, being static, vanishes and the transport function stands revealed. We conclude from these experiments that myoglobin may transport a significant fraction of the oxygen consumed by muscle mitochondria.  相似文献   

13.
Because the chick's anterior latissimus dorsi muscle (ALD) regenerates a fast-twitch muscular connection after tenotomy, the pigeon's ALD was tenotomized, either at the origin or through the muscle 0.5 cm from the origin, to determine whether this muscle behaves similarly to the chick muscle. These procedures were compared in pigeons operated upon at 7 weeks, versus 5 to 9 months of age. The pigeon's ALD did not regenerate a new connection, and other differences were observed between the pigeon and chick ALD. The pigeon ALD has only a single slow muscle-fiber type, has fewer fast fibers, and transforms to a fast-twitch muscle more readily than the chick ALD after tenotomy. The transformation of muscle fiber types occurred more readily in the older pigeons than those tenotomized at 7 weeks of age. Tenotomy induced morphological alterations of the muscle fiber structure in all of the pigeons, which is in contrast to the absence of changes in the tenotomized chick ALD. Therefore the pigeon and chick ALD respond completely differently to tenotomy.  相似文献   

14.
Ashhurst DE 《Tissue & cell》1969,1(3):485-496
The pectoralis major muscle of the pigeon is composed of two types of muscle fibre. In the Type I fibres, the myofibrils are closely packed and there are few mitochondria. The myofibrils in the Type II fibres are separated by numerous columns of large mitochondria and lipid droplets. The membrane systems of the two types of fibre are similar. The triads occur at the Z-line; the sarcoplasmic reticulum is in the form of large terminal cisternae which are joined by narrow longitudinal tubules to a broad central cisterna. The value of morphological criteria in the classification of muscle fibres is discussed.  相似文献   

15.
The structure, function and regulation of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes from pigeon breast muscle are reviewed. The nature of essential groups involved in the formation of active centers of the first components of the complexes, i.e., pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, is described. The catalytic mechanism of the pyruvate dehydrogenase reaction and the peculiarities of cooperative interactions of the active centers of the above enzymes are discussed.  相似文献   

16.
Across a range of vertebrate species, it is known that there is a negative association between maximum lifespan and mitochondrial hydrogen peroxide production. In this report, we investigate the underlying biochemical basis of the low hydrogen peroxide production rate of heart mitochondria from a long-lived species (pigeon) compared with a short-lived species with similar body mass (rat). The difference in hydrogen peroxide efflux rate was not explained by differences in either superoxide dismutase activity or hydrogen peroxide removal capacity. During succinate oxidation, the difference in hydrogen peroxide production rate between the species was localized to the ΔpH-sensitive superoxide producing site within complex I. Mitochondrial ΔpH was significantly lower in pigeon mitochondria compared with rat, but this difference in ΔpH was not great enough to explain the lower hydrogen peroxide production rate. As judged by mitochondrial flavin mononucleotide content and blue native polyacrylamide gel electrophoresis, pigeon mitochondria contained less complex I than rat mitochondria. Recalculation revealed that the rates of hydrogen peroxide production per molecule of complex I were the same in rat and pigeon. We conclude that mitochondria from the long-lived pigeon display low rates of hydrogen peroxide production because they have low levels of complex I.  相似文献   

17.
Glycolyl-CoA can be formed during the course of the beta-oxidation by rat liver mitochondria of 4-hydroxybutyrate. The existence of this beta-oxidation has been previously supported by the occurrence of 4-hydroxybutyrate and its beta-oxidation catabolites in urine from patients with 4-hydroxybutyric aciduria, an inborn error of gamma-aminobutyric acid metabolism due to the deficiency of succinic semialdehyde dehydrogenase. The characteristics of the mitochondrial beta-oxidation of 4-hydroxybutyrate were, in rat liver, compared with those of the mitochondrial beta-oxidation of butyrate. The inhibition by malonate of the oxidation of 4-hydroxybutyrate was about twofold weaker than that of oxidation of butyrate, whereas both oxidations were abolished by preincubating the mitochondria with 1 mM valproic acid, a known inhibitor of mitochondrial beta-oxidation. Mitochondria from rat kidney cortex were demonstrated to catalyse, as previously shown for hepatic mitochondria, the carnitine-dependent oxidation of 12-hydroxylauroyl-CoA-omega-Hydroxymonocarboxylyl-CoAs are thus concluded to be precursors of glycolyl-CoA also in rat kidney cortex. In addition, 3-hydroxypyruvate was found to be a precursor of glycolyl-CoA, since it was oxidized by bovine heart pyruvate dehydrogenase with a cofactor requirement similar to that of pyruvate oxidation. Glycolyl-CoA was a substrate of carnitine acetyltransferase (pigeon breast muscle). Pig heart citrate synthase was capable of catalyzing the condensation of glycolyl-CoA with oxaloacetate. The product of this reaction induced low NADH production rates dependent on the addition of porcine heart aconitase and isocitrate dehydrogenase.  相似文献   

18.
The pigeon breast muscle pyruvate dehydrogenase complex was resolved into three component enzymes: lipoate acetyltransferase, pyruvate dehydrogenase, and lipoamide dehydrogenase. The antibodies against each component enzyme were prepared. All of the antibodies against component enzymes precipitated the pyruvate dehydrogenase complex. The enzyme complex was recovered as the immunoprecipitate from the extract of breast muscle of a pigeon that had received a single injection of L-[4,5-3H]leucine. The immunoprecipitate was separated into each component enzyme by SDS-polyacrylamide gel electrophoresis. The relative isotopic leucine incorporations per mg of protein into each component enzyme 4 h after the injection were 1.0 : 0.9 : 1.4 : 2.7 for lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase, respectively. The half-lives of lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase were 7.7, 2.5, 2.6, and 1.8 days, respectively. These results indicate that the component enzymes of the pyruvate dehydrogenase complex were synthesized and degraded at different rates.  相似文献   

19.
Isolated mitochondria of pigeon and guinea pig liver were subjected to zonal centrifugation. With pigeon liver mitochondria there was uniform distribution of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, aspartate aminotransferase and glutamate dehydrogenase activities. Guinea pig liver mitochondria demonstrated two pyruvate carboxylase and phosphoenolpyruvate carboxykinase maxima but only one maximum with aspartate aminotransferase, malate dehydrogenase and glutamate dehydrogenase. Mitochondrial enzyme levels in rat, pigeon and guinea pig indicate different roles of certain gluconeogenic enzymes in the transport of carbon and hydrogen in and out of mitochondria.  相似文献   

20.
Birds are unique since they can combine a high rate of oxygen consumption at rest with a high maximum life span (MLSP). The reasons for this capacity are unknown. A similar situation is present in primates including humans which show MLSPs higher than predicted from their rates of O2 consumption. In this work rates of oxygen radical production and O2 consumption by mitochondria were compared between adult male rats (MLSP = 4 years) and adult pigeons (MLSP = 35 years), animals of similar body size. Both the O2 consumption of the whole animal at rest and the O2 consumption of brain, lung and liver mitochondria were higher in the pigeon than in the rat. Nevertheless, mitochondrial free radical production was 2-4 times lower in pigeon than in rat tissues. This is possible because pigeon mitochondria show a rate of free radical production per unit O2 consumed one order of magnitude lower than rat mitochondria: bird mitochondria show a lower free radical leak at the respiratory chain. This result, described here for the first time, can possibly explain the capacity of birds to simultaneously increase maximum longevity and basal metabolic rate. It also suggests that the main factor relating oxidative stress to aging and longevity is not the rate of oxygen consumption but the rate of oxygen radical production. Previous inconsistencies of the rate of living theory of aging can be explained by a free radical theory of aging which focuses on the rate of oxygen radical production and on local damage to targets relevant for aging situated near the places where free radicals are continuously generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号