首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An inhibitor of the high conductance, Ca2(+)-activated K+ channel (PK,Ca) has been purified to homogeneity from venom of the scorpion Buthus tamulus by a combination of ion exchange and reversed-phase chromatography. This peptide, which has been named iberiotoxin (IbTX), is one of two minor components of the crude venom which blocks PK,Ca. IbTX consists of a single 4.3-kDa polypeptide chain, as determined by polyacrylamide gel electrophoresis, analysis of amino acid composition, and Edman degradation. Its complete amino acid sequence has been defined. IbTX displays 68% sequence homology with charybdotoxin (ChTX), another scorpion-derived peptidyl inhibitor of PK,Ca, and, like this latter toxin, its amino terminus contains a pyroglutamic acid residue. However, IbTX possesses 4 more acidic and 1 less basic amino acid residue than does ChTX, making this toxin much less positively charged than the other peptide. In single channel recordings, IbTX reversibly blocks PK,Ca in excised membrane patches from bovine aortic smooth muscle. It acts exclusively at the outer face of the channel and functions with an IC50 of about 250 pM. Block of channel activity appears distinct from that of ChTX since IbTX decreases both the probability of channel opening as well as the channel mean open time. IbTX is a selective inhibitor of PK,Ca; it does not block other types of voltage-dependent ion channels, especially other types of K+ channels that are sensitive to inhibition by ChTX. IbTX is a partial inhibitor of 125I-ChTX binding in bovine aortic sarcolemmal membrane vesicles (Ki = 250 pM). The maximal extent of inhibition that occurs is modulated by K+, decreasing as K+ concentration is raised, but K+ does not affect the absolute inhibitory potency of IbTX. A Scatchard analysis indicates that IbTX functions as a noncompetitive inhibitor of ChTX binding. Taken together, these data suggest that IbTX interacts at a distinct site on the channel and modulates ChTX binding by an allosteric mechanism. Therefore, IbTX defines a new class of peptidyl inhibitor of PK,Ca with unique properties that make it useful for investigating the characteristics of this channel in target tissues.  相似文献   

2.
Charybdotoxin (ChTX), a peptidyl inhibitor of the high conductance Ca2+-activated K+ channel (PK,Ca), has been radiolabeled to high specific activity with 125I, and resulting derivatives have been well separated. The monoiodotyrosine adduct blocks PK,Ca in vascular smooth muscle with slightly reduced potency compared with the native peptide under defined experimental conditions. [125I]ChTX, representing this derivative, binds specifically and reversibly to a single class of sites in sarcolemmal membrane vesicles prepared from bovine aortic smooth muscle. These sites display a Kd of 100 pM for the iodinated toxin, as determined by either equilibrium or kinetic binding analyses. Binding site density is about 500 fmol/mg of protein in isolated membranes. The addition of low digitonin concentrations to disrupt the vesicle permeability barrier increases the maximum receptor concentration to 1.5 pmol/mg of protein, correlating with the observations that ChTX binds only at the external pore of PK,Ca and that the membrane preparation is of mixed polarity. Competition studies with ChTX yield a Ki of about 20 pM for native toxin. Binding of [125I]ChTX is modulated by ionic strength as well as by metal ions that are known to interact with PK,Ca. Moreover, tetraethylammonium ion, which blocks PK,Ca with moderately high affinity when applied at the external membrane surface, inhibits [125I]ChTX binding in an apparently competitive fashion with a Ki similar to that found for channel inhibition. In marked contrast, agents that do not inhibit PK,Ca in smooth muscle (e.g. tetrabutylammonium ion, other toxins homologous with ChTX, and pharmacological agents that modulate the activity of dissimilar ion channels) have no effect on [125I]ChTX binding in this tissue. Taken together, these results suggest that the binding sites for ChTX which are present in vascular smooth muscle are directly associated with PK,Ca, thus identifying [125I]ChTX as a useful probe for elucidating the biochemical properties of these channels.  相似文献   

3.
Charybdotoxin (ChTX) inhibits with high affinity a voltage-gated K+ channel that is present in human T lymphocytes. In this system, 125I-ChTX binds specifically and reversibly to a single class of sites which display a Kd of 8-14 pM, as measured by either equilibrium or kinetic binding protocols. The maximum density of sites, 542 sites/cell, correlates well with the density of K+ channel as determined by electrophysiological experiments. Binding of 125I-ChTX is modulated by the ionic strength of the incubation media and by Ca2+. Increasing concentrations of either K+, Na+, or Ca2+ cause inhibition of toxin binding. Inhibition of binding by Ca2+ is due, primarily, to an effect on toxin dissociation rates. Increasing the pH of the external media from 6.8 to 8.5 enhances toxin binding, due to an increase in affinity with no significant effect on the maximum density of receptor sites. Different agents that block the voltage-gated K+ channel in human T lymphocytes, inhibit toxin binding. Mitogen-stimulated T cells display 2.5-3-fold increase in toxin binding as compared with unstimulated control cells. These data, taken together, suggest that 125I-ChTX binding sites identified in this study, represent the predominant voltage-gated K+ channel present in peripheral human T lymphocytes. Therefore, 125I-ChTX is a useful probe for elucidating the physiological role of this type of K+ channel.  相似文献   

4.
Charybdotoxin (ChTX), a potent inhibitor of the high conductance Ca2(+)-activated K+ channel (PK,Ca) is a highly basic peptide isolated from venom of the scorpion Leiurus quinquestriatus hebraeus, whose primary structure has been determined (Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3329-3333). The synthesis of this peptide using continuous flow solid phase fluorenylmethyloxycarbonyl-pentafluorophenyl ester methodology has now been achieved. The 1-37-amino acid hexasulfhydryl peptide oxidizes readily to give the tricyclic disulfide structure in good yield. This folded synthetic material is identical to native toxin based on three criteria: co-migration with ChTX on reversed phase high performance liquid chromatography (HPLC); competitive inhibition of 125I-labeled monoiodotyrosine charybdotoxin binding to bovine aortic sarcolemmal membrane vesicles with a Ki (10 pM) identical to that of native toxin; blockade of PK,Ca activity in excised outside-out patches from bovine aortic smooth muscle with the potency and inhibitory properties characteristic of ChTX (i.e. appearance of silent periods interdispersed with normal bursts of channel activity in single channel recordings). Selective enzymatic digestion of native or synthetic ChTX by simultaneous exposure to chymotrypsin and trypsin yields identical reversed phase HPLC profiles. Analysis of the sequence and amino acid composition of the resulting fragments defines a disulfide bond arrangement (Cys7-Cys28, Cys13-Cys33, Cys17-Cys35) which differs from that previously suggested. This configuration predicts a highly folded tertiary structure for ChTX which, together with observations from electrophysiological and binding experiments, suggests a possible mechanism by which ChTX interacts with PK,Ca to block channel function.  相似文献   

5.
A polypeptide was identified in the venom of the scorpion Leiurus quinquestriatus hebraeus by its potency to inhibit the high-affinity binding of the radiolabeled snake venom toxin dendrotoxin I (125I-DTX1) to its receptor site. It has been purified, and its properties investigated by different techniques were found to be similar to those of MCD and DTXI, two polypeptide toxins active on a voltage-dependent K+ channel. However, its amino acid sequence was determined, and it was shown that this toxin is in fact charybdotoxin (ChTX), a toxin classically used as a specific tool to block one class of Ca2+-activated K+ channels. ChTX, DTXI, and MCD are potent convulsants and are highly toxic when injected intracerebroventricularly in mice. Their toxicities correlate well with their affinities for their receptors in rat brain. These three structurally different toxins release [3H]GABA from preloaded synaptosomes, the efficiency order being DTXI greater than ChTX greater than MCD. Both binding and cross-linking experiments of ChTX to rat brain membranes and to the purified MCD/DTXI binding protein have shown that the alpha-subunit (Mr = 76K-78K) of the MCD/DTXI-sensitive K+ channel protein also contains the ChTX binding sites. Binding sites for DTXI, MCD, and ChTX are in negative allosteric interaction. Our results show that charybdotoxin belongs to the family of toxins which already includes the dendrotoxins and MCD, which are blockers of voltage-sensitive K+ channels. ChTX is clearly not selective for Ca2+-activated K+ channel.  相似文献   

6.
The neuronal Ca2+ channel blocker omega-conotoxin (GVIA) binds with very high affinity (Kd of 0.8 pM) to a single class of receptors in purified rat brain synaptic plasma membrane vesicles. Three types of agents have been found to modulate toxin binding. The affinity of omega-conotoxin is decreased by metal ions or organic cations which interact at the pore of voltage-dependent Ca2+ channels. Dynorphin A [1-13] and related peptides stimulate omega-conotoxin binding by increasing toxin affinity through a nonopiate allosteric mechanism. Venom of the spider Plectreurys tristes inhibits omega-conotoxin binding (IC50 of 30 ng protein/ml) by a noncompetitive allosteric mechanism. These results suggest that omega-conotoxin binding sites exist in a complex with distinct receptors for other agents, all of which may be functionally associated with neuronal Ca2+ channels.  相似文献   

7.
125I-[Tyr2]scyllatoxin allowed to label a single class of high-affinity receptors in membranes from the human neuroblastoma cell line NB-OK 1. The Kd of these receptors was 60 pM for scyllatoxin (Leiurotoxin I) and 20 pM for apamin and the Bmax was low (3.8 fmol/mg membrane protein). K+ increased toxin binding at low concentrations but exerted opposite effects at high concentrations. Ca2+, guanidinium and Na+ exerted only inhibitory effects on binding. Scyllatoxin binding sites were overexpressed 2.5-fold after a 24-h cell pretreatment with 2 mM butyrate. This effect was suppressed by cycloheximide.  相似文献   

8.
R R Schmidt  H Betz  H Rehm 《Biochemistry》1988,27(3):963-967
The presynaptically active snake venom neurotoxin beta-bungarotoxin (beta-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K+ channels. Here we show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of 125I-labeled beta-Butx to chick and rat brain membranes with apparent Ki values of 180 nM and 1100 nM, respectively. The mechanism of inhibition by MCD peptide is noncompetitive, as is inhibition of 125I-beta-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. Beta-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of 125I-beta-Butx by lowering its affinity to brain membranes.  相似文献   

9.
Dendrotoxin I (DpI) from black mamba venom (Dendroaspis polylepis) has high affinity binding sites on rat brain synaptic membranes. Native DpI displaced [125I]-DpI binding with a Ki of 1 x 10(-10) M, and over 90% of specific binding was displaceable. Charybdotoxin isolated from the Israeli scorpion venom (Leiurus quinquestriatus hebraeus), also displaced [125I]-DpI binding, with a Ki of approximately 3 x 10(-9) M, although the displacement curve was shallower than with native DpI. Both toxins are thought to be high affinity blockers of specific K+ currents. Charybdotoxin selectively blocks some types of Ca2+-activated K+ channels, whereas dendrotoxins only block certain voltage-dependent K+ channels. The interaction between the two types of toxin at the DpI binding site is unexpected and may suggest the presence of related binding sites on different K+ channel proteins.  相似文献   

10.
Purified adrenomedullary plasma membranes contain two high-affinity binding sites for 125I-omega-conotoxin, with KD values of 7.4 and 364 pM and Bmax values of 237 and 1,222 fmol/mg of protein, respectively. Dissociation kinetics showed a biphasic component and a high stability of the toxin-receptor complex, with a t1/2 of 81.6 h for the slow dissociation component. Unlabeled omega-conotoxin inhibited the binding of the radioiodinated toxin, adjusting to a two-site model with Ki1 of 6.8 and Ki2 of 653 pM. Specific binding was not affected by Ca2+ channel blockers or activators, cholinoceptor antagonists, adrenoceptor blockers, Na+ channel activators, dopaminoceptor blockers, or Na+/H+ antiport blockers, but divalent cations (Ca2+, Sr2+, and Ba2+) inhibited the toxin binding in a concentration-dependent manner. The binding of the dihydropyridine [3H]nitrendipine defined a single specific binding site with a KD of 490 pM and a Bmax of 129 fmol/mg of protein. At 0.25 microM, omega-conotoxin was not able to block depolarization-evoked Ca2+ uptake into cultured bovine adrenal chromaffin cells depolarized with 59 mM K+ for 30 s, whereas under the same conditions, 1 microM nitrendipine inhibited uptake by approximately 60%. When cells were hyperpolarized with 1.2 mM K+ for 5 min and then Ca2+ uptake was subsequently measured during additions of 59 mM K+. Omega-conotoxin partially inhibited Ca2+ uptake in a concentration-dependent manner. These results suggest that two different types of Ca2+ channels might be present in chromaffin cells. However, the molecular identity of omega-conotoxin binding sites remains to be determined.  相似文献   

11.
An inhibitor of apamin binding has been purified to homogeneity in three chromatographic steps from the venom of the scorpion, Leiurus quinquestriatus hebraeus. The inhibitor, which we have named leiurotoxin I, represents less than 0.02% of the venom protein. It is a 3.4-kDa peptide with little structural homology to apamin although it has some homology to other scorpion toxins such as charybdotoxin, noxiustoxin, and neurotoxin P2. Leiurotoxin I completely inhibits 125I-apamin binding to rat brain synaptosomal membranes (Ki = 75 pM). Thus, it is 10-20-fold less potent than apamin. Leiurotoxin I is not a strictly competitive inhibitor of this binding reaction. Like apamin, leiurotoxin I blocks the epinephrine-induced relaxation of guinea pig teniae coli (ED50 = 6.5 nM), while having no effect on the rate or force of contraction in guinea pig atria or rabbit portal vein preparations. Thus, leiurotoxin I of scorpion venom and apamin of honeybee venom demonstrate similar activities in a variety of tissues, yet are structurally unrelated peptides. These two peptides should be useful in elucidating the role of the small conductance, Ca2+-activated K+ channels in different tissues.  相似文献   

12.
Modulation of phosphoenzyme forms of the Na/K pump by Na+ and K+ was studied by measuring the rate of Pi-promoted ouabain binding to resealed ghosts made from human red cells. This system permits distinguishing the effects of the ions at intracellular and external binding sites. Internal K+, Ki, inhibited the rate of Pi-promoted ouabain binding, contrary to a prediction based on a current model of the pump. External K+, Ko, failed to inhibit ouabain binding in the absence of Ki. However, Ko enhanced the inhibition by Ki. Nai also inhibited ouabain binding; this inhibition was much less affected by Ko than was inhibition by Ki, suggesting that Ki and Nai affect ouabain binding at different internal sites. Nao inhibited ouabain binding in the absence of Ki or Ko, so Nao and Ko also act at different sites. With Nao present, Ki stimulated ouabain binding. Thus a condition was found in which the predicted stimulation of binding by Ki was observed. The results of this study are interpreted in terms of three phosphoenzyme forms of the pump: E1P, E*P, and E2P. E*P is the form binding ouabain with highest affinity. Ki promotes E*P----E2P, thereby inhibiting ouabain binding. Ko binds only to E2P, therefore Ki is required for inhibition by Ko, and there is little E2P present with no Ki. Nao inhibits binding by stabilizing E1P whereas Nai inhibits by stabilizing E1. The stimulation by Ki with Nao present means that Ki and Nao together favor formation of E*P. Furthermore, Ki and Nao may bind to the pump simultaneously. Ki may play a role in the normal pump cycle, binding at allosteric sites to promote E*P----E2P.  相似文献   

13.
Binding of 125I-omega-conotoxin GVIA and [3H]nitrendipine to membranes from bovine adrenal medulla was investigated to test for the presence of N- and L-type Ca2+ channels in adrenal chromaffin cells. Saturable, high-affinity binding sites for 125I-omega-conotoxin and [3H]nitrendipine were detected in a membrane fraction from adrenal medulla. [3H]Nitrendipine binding sites were found to have a KD of 500 +/- 170 pM and a Bmax of 26 +/- 11 pmol/g of protein. 125I-omega-Conotoxin binding sites had a KD of 215 +/- 56 pM and a Bmax of 105 +/- 18 pmol/g of protein, about four times the number of sites found for [3H]nitrendipine. 125I-omega-Conotoxin binding was potently inhibited by unlabeled toxin and Ca2+ but was unaffected by dihydropyridines, verapamil, and diltiazem. [3H]Nitrendipine binding was not affected by omega-conotoxin, whereas it was inhibited by other dihydropyridines. Bay K 8644 potentiated K+-evoked cytosolic Ca2+ transients measured by fura-2 fluorescence, and this potentiation was completely blocked by nifedipine. In contrast, omega-conotoxin had no effect on Bay K 8644-evoked Ca2+ transients. Thus, the binding sites for omega-conotoxin and for nitrendipine appear to be different. The results confirm the presence of L-type Ca2+ channels and open the possibility of N-type Ca2+ channels as the omega-conotoxin binding sites in chromaffin cell membranes.  相似文献   

14.
Monoiodotyrosine ([125I]ChTX) binds with high affinity to a single class of receptors present in bovine aortic smooth muscle sarcolemmal membranes that are functionally associated with the high-conductance Ca(2+)-activated K+ channel [maxi-K channel; Vázquez, J., et al. (1989) J. Biol. Chem. 265, 20902-20909]. Cross-linking experiments carried out with this preparation in the presence of [125I]ChTX and disuccinimidyl suberate indicate specific incorporation of radioactivity into a protein of Mr 35,000. The smooth muscle ChTX receptor can be solubilized in active form in the presence of selected detergents. Treatment of membranes with digitonin releases about 50% of the ChTX binding sites. The solubilized receptor retains the same biochemical and pharmacological properties that are characteristic of toxin interaction with membrane-bound receptors. The solubilized receptor binds specifically to wheat germ agglutinin-Sepharose resin, suggesting that it is a glycoprotein. Functional ChTX binding sites can also be solubilized in 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS). Sucrose density gradient centrifugation of either digitonin or CHAPS extracts indicates that the ChTX receptor has a high apparent sedimentation coefficient (s20,w = 23 and 18 S, respectively). Cross-linking experiments indicate that the appearance of the 35-kDa membrane protein correlates with ChTX binding activity after both wheat germ agglutinin-Sepharose and sucrose density gradient centrifugation steps. Given the high apparent sedimentation coefficient of the ChTX receptor, the 35-kDa membrane protein may be a subunit of a higher molecular weight complex which forms the maxi-K channel in smooth muscle sarcolemma.  相似文献   

15.
Fluspirilene binds with high affinity to a single class of sites in purified porcine cardiac sarcolemmal membrane vesicles at a Kd of 0.6 nM and a Bmax that is in approximately 1:1 stoichiometry with other Ca2+ entry blocker receptors. Fluspirilene binding is modulated by various classes of L-type Ca2+ channel effectors. Metal ion channel inhibitors (e.g. Cd2+) stimulate binding primarily by increasing ligand affinity, whereas channel substrates (e.g. Ca2+) inhibit binding. Dihydropyridine, aralkylamine, and benzothiazepine Ca2+ entry blockers partially inhibit binding with Ki values equivalent to their respective Kd values, indicating close coupling between binding sites for the former agents and the diphenylbutylpiperidine site. All of these agents function as mixed inhibitors and affect both Kd and Bmax of fluspirilene binding. Only other substituted diphenylbutylpiperidines (e.g. pimozide) inhibit binding competitively. Diphenylbutylpiperidines, on the other hand, block nitrendipine, D-600, and diltiazem binding through a noncompetitive mechanism with Ki values much reduced from their measured Kd values, suggesting that coupling between the diphenylbutylpiperidine site and receptors for diverse Ca2+ entry blockers is more indirect. In addition, high affinity sites have been detected for fluspirilene in bovine aortic sarcolemmal vesicles, rat brain synaptic membranes, and GH3 rat anterior pituitary cell plasma membranes. Fluspirilene also effectively blocks Ca2+ flux through L-type Ca2+ channels in GH3 cells. Together, these results suggest that fluspirilene binds with high affinity to a unique fourth site in the Ca2+ entry blocker receptor complex and that substituted diphenylbutylpiperidines represent a new structural class of potent L-type Ca2+ channel inhibitors.  相似文献   

16.
High-affinity binding sites for mono[125I]iodoapamin were detected in membranes (Kd = 59 pM, Bmax = 24 fmol/mg protein) and cultured cells (Kd = 69 pM, Bmax = 2.8 fmol/mg protein) from rat heart and in membranes from guinea-pig ileum (Kd = 67 pM, Bmax 42 fmol/mg protein) and liver (Kd = 15 pM, Bmax = 43 fmol/mg protein). Binding was stimulated by K+ ions (K0.5 = 0.3-0.5 mM). Covalent labeling with arylazide [125I]iodoapamin derivatives showed that smooth muscle, liver and heart binding molecules are associated with a 85-87-kDa polypeptide. A second strongly labeled 57-kDa component was identified in liver membranes only.  相似文献   

17.
Using Ba2+ as a probe, we performed a detailed characterization of an external K+ binding site located in the pore of a large conductance Ca2+-activated K+ (BKCa) channel from skeletal muscle incorporated into planar lipid bilayers. Internal Ba2+ blocks BKCa channels and decreasing external K+ using a K+ chelator, (+)-18-Crown-6-tetracarboxylic acid, dramatically reduces the duration of the Ba2+-blocked events. Average Ba2+ dwell time changes from 10 s at 10 mM external K+ to 100 ms in the limit of very low [K+]. Using a model where external K+ binds to a site hindering the exit of Ba2+ toward the external side (Neyton, J., and C. Miller. 1988. J. Gen. Physiol. 92:549-568), we calculated a dissociation constant of 2.7 mircoM for K) at this lock-in site. We also found that BK(Ca) channels enter into a long-lasting nonconductive state when the external [K+] is reduced below 4 microM using the crown ether. Channel activity can be recovered by adding K+, Rb+, Cs+, or NH4+ to the external solution. These results suggest that the BK(Ca) channel stability in solutions of very low [K+] is due to K+ binding to a site having a very high affinity. Occupancy of this site by K+ avoids the channel conductance collapse and the exit of Ba2+ toward the external side. External tetraethylammonium also reduced the Ba2+ off rate and impeded the channel from entering into the long-lasting nonconductive state. This effect requires the presence of external K+. It is explained in terms of a model in which the conduction pore contains Ba2+, K+, and tetraethylammonium simultaneously, with the K+ binding site located internal to the tetraethylammonium site. Altogether, these results and the known potassium channel structure (Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. Science. 280:69-77) imply that the lock-in site and the Ba2+ sites are the external and internal ion sites of the selectivity filter, respectively.  相似文献   

18.
We have characterized picomolar affinity binding sites for human calcitonin gene-related peptide (CGRP) in rat brain and heart (atria and ventricle) membranes. By saturation analysis, apparent dissociation constant (KD) values of high affinity sites for [125I]-human CGRP are 9 approximately 15 pM (brain), 34 pM (ventricle) and 85 pM (atria). Low affinity sites with KD values of about 50 nM are found in rat brain and ventricle, but not in atria. Human and rat CGRP potently inhibited [125I]-human CGRP binding to these high affinity sites with apparent inhibition constant (Ki) values comparable to their KD values. Salmon calcitonin marginally inhibited these binding with Ki values between 0.1 microM and 1 microM. Extremely potent cardiovascular and gastrointestinal actions of CGRP might be mediated through CGRP binding sites with picomolar affinity which are similar to those we characterized in this study.  相似文献   

19.
In rat brain, high-conductance Ca2+-activated K+ (BK) channels are targeted to axons and nerve terminals [Knaus, H. G., et al. (1996) J. Neurosci. 16, 955-963], but absolute levels of their regional expression and subunit composition have not yet been fully established. To investigate these issues, an IbTX analogue ([125I]IbTX-D19Y/Y36F) was employed that selectively binds to neuronal BK channels with high affinity (Kd = 21 pM). Cross-linking experiments with [125I]IbTX-D19Y/Y36F in the presence of a bifunctional reagent led to covalent incorporation of radioactivity into a protein with an apparent molecular mass of 25 kDa. Deglycosylation and immunoprecipitation studies with antibodies raised against alpha- and smooth muscle beta-subunits of the BK channel suggest that the beta-subunit that is associated with the neuronal BK channel is a novel protein. Quantitative receptor autoradiography reveals the highest levels of BK channel expression in the outer layers of the neocortex, hippocampal perforant path projections, and the interpeduncular nucleus. This distribution pattern has also been confirmed in immunocytochemical experiments with a BK channel-selective antibody. Taken together, these findings imply that neuronal BK channels exhibit a restricted distribution in brain and have a subunit composition different from those of their smooth muscle congeners.  相似文献   

20.
The mast cell degranulating peptide (MCD) and dendrotoxin I (DTXI) are two toxins, one extracted from bee venom, the other one from snake venom, that are thought to act on voltage-sensitive K+ channels. Binding sites for the two toxins have been solubilized. The solubilized sites were stable and retained their high affinity for 125I-DTXI and 125I-MCD (Kd approximately equal to 100 pM). Interactions were found between MCD and DTXI binding sites in the solubilized state, establishing that the two different toxins act on the same protein complex. This conclusion was strengthened by the observations (i) that conditions of solubilization that eliminated 125I-MCD binding activity also eliminated 125I-DTX binding activity while both types of activities were preserved in the presence of K+ or Rb+ and (ii) that binding components for the two types of toxins had similar sedimentation coefficients and copurified in partial purifications. A component of the receptor protein for 125I-MCD has been identified; it has a Mr of 77,000 +/- 2000. This polypeptide was similar to or identical in molecular weight with that which serves as a receptor for DTXI (Mr 76,000 +/- 2000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号