首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow cytometry (FC) technique used with certain fluorescent dyes (ChemChrome V6 [CV6], DRAQ5, and PI) has proven useful to label and to detect different physiological states of yeast and malolactic bacterium starters conducting cider fermentation over time (by performing sequential inoculation of microorganisms). First, the technique was tested with pure cultures of both types of microorganisms grown in synthetic media under different induced stress conditions. Metabolically active cells detected by FC and by the standard plate-counting method for both types of microorganisms in fresh overnight pure cultures gave good correlations between the two techniques in samples taken at this stage. Otherwise, combining the results obtained by FC and plating during alcoholic and malolactic fermentation over time in the cider-making process, different subpopulations were detected, showing significant differences between the methods. A small number of studies have applied the FC technique to analyze fermentation processes and mixed cultures over time. The results were used to postulate equations explaining the different physiological states in cell populations taken from fresh, pure overnight cultures under nonstress conditions or cells subjected to stress conditions over time, either under a pure-culture fermentation process (in this work, corresponding to alcoholic fermentation) or under mixed-fermentation conditions (for the malolactic-fermentation phase), that could be useful to improve the control of the processes.  相似文献   

2.
Flow cytometry (FC) has been introduced to characterize and to assess the physiological states of microorganisms in conjunction with the classical plate-counting method. To show the applicability of the technique, in particular for the development of kinetic models, pure culture fermentation experiments were followed over time, using both prokaryotic (Lactobacillus hilgardii) and eukaryotic (Saccharomyces cerevisiae) microorganisms growing in standard culture media (MRS and YPD). The differences observed between the active and viable cells determined by FC and CFU, respectively, allowed us to determine that a large number of cells were in a viable but nonculturable (VBNC) state, which resulted in a subpopulation much larger than the damaged-cell (double-stained) subpopulation. Finally, the determination of the evolution of viable, the VBNC, and the dead cells allowed us to develop a segregated kinetic model to describe the yeast and the bacteria population dynamics and glucose consumption in batch cultures. This model, more complete than that which is traditionally used, based only on viable cell measurements, describes better the behavior and the functionality of the cultures, giving a deeper knowledge in real time about the status and the course of the bioprocesses.  相似文献   

3.
Samples of fermenting Chardonnay juice were inoculated with five commercial cultures of Leuconostoc oenos to promote malolactic fermentation. Controls were not inoculated with malolactic starter cultures; one was held under the same conditions as the juice inoculated with malolactic starter cultures and the other was held under conditions in which malolactic fermentation was inhibited. Bacterial growth and chemical composition of the wines were monitored for eight weeks after the wines were inoculated with the yeast starter culture. The five strains of L. oenos differed in growth kinetics and rates of malic acid degradation. Significant differences were detected among the finished wines subjected to sensory evaluation.  相似文献   

4.
Aims: To isolate indigenous Oenococcus oeni strains suitable as starters for malolactic fermentation (MLF), using a reliable polyphasic approach. Methods and Results: Oenococcus oeni strains were isolated from Nero di Troia wines undergoing spontaneous MLF. Samples were taken at the end of alcoholic fermentation and during MLF. Wine samples were diluted in a sterile physiological solution and plated on MRS and on modified FT80. Identification of O. oeni strains was performed by a polymerase chain reaction (PCR) experiment using strain‐specific primers. Strains were further grouped using a multiplex RAPD‐PCR analysis. Then, six strains were inoculated in two wine‐like media with two different ethanol concentrations (11 and 13% vol/vol) with a view to evaluate their capacity to grow and to perform MLF. In addition, a quantitative PCR (qRT‐PCR) approach was adapted to monitor the physiological state of the strains selected. Conclusion: A positive correlation between the malolactic activity performance and the ability to develop and tolerate stress conditions was observed for two selected O. oeni strains. Significance and Impact of the Study: The results reported are useful for the selection of indigenous MLF starter cultures with desired oenological traits from typical regional wines. It should be the base for the improvement in organoleptic quality of typical red wine.  相似文献   

5.
A complex substrate, reconstituted concentrated apple juice, was used for testing the principal processes during yeast and malolactic bacteria fermentations. Interactions between microorganisms were studied based on two controlled inoculation procedures, and at different fermentation temperatures. Temperature had a more important effect on yeast growth than the presence of malolactic bacteria in the medium. Acceleration of the death phase of the bacterial population was detected at increased temperatures. In all cases, malic acid degradation was affected by the fermentation temperature. When experiments were carried out with simultaneous inoculation, acidification of the medium took place at both temperatures tested (15°C and 22°C), that was not observed when the malolactic bacteria were inoculated after completion of alcoholic fermentation by yeasts. Received 4 August 1998/ Accepted in revised form 9 December 1998  相似文献   

6.
AIMS: To study arginine degradation and carcinogenic ethyl carbamate precursor citrulline formation during and after malolactic fermentation (MLF). METHODS AND RESULTS: MLF was induced in white wine with two commercial Oenococcus oeni strains under different winemaking conditions regarding the type of alcoholic fermentation (spontaneous, induced) and the lees management (racked, on lees). Arginine degradation and citrulline formation did not occur during malic acid degradation in any treatment. In five of the six treatments in which arginine degradation took place, it occurred 3 weeks after malic acid depletion and significant amounts of citrulline were formed. Presence of yeast lees in wines led to increased citrulline formation. Conclusions: This study suggests that arginine metabolism is inhibited in oenococci at low pH values (< 3.5) and that in the postalcoholic fermentation phase, citrulline formation from arginine degradation can be avoided if MLF is induced by pure cultures of O. oeni with inhibition of the bacterial biomass after malic acid depletion. Residual yeast lees in the wine have been identified as a significant risk factor for increased citrulline formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Conclusions drawn from this study allow reducing the risk of carcinogenic ethyl carbamate formation from citrulline excretion by wine lactic acid bacteria.  相似文献   

7.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

8.
Abstract

In spite of its traditional nature, wine making is largely concerned with the progress of biotechnology. High cell density reactors have potential for enology: improved performance of alcoholic and malolactic fermentations, smaller scale fermentation facilities, adaptation to continuous processes. Among the immobilization techniques, cell entrapment in alginate beads seems to be an impressive one. Alcoholic fermentation of wine, malolactic fermentation, bottle fermentation known as “Methode champenoise” and sparkling wine are among the industrial applications. Knowledge of kinetics and physiology in microorganisms in heterogeneous media has expanded in the last few years. The use of immobilized yeast cells for the champagne method would greatly simplify “remuage”. The compared metabolism of entrapped and free cells during the bottle fermentation shows differences, but the final product does not reveal significant sensory disparity. New products can be obtained with more thoroughly controlled conditions.  相似文献   

9.
Real-time, or quantitative, PCR (QPCR) was developed for the rapid quantification of two of the most important yeast groups in alcoholic fermentation (Saccharomyces spp. and Hanseniaspora spp.). Specific primers were designed from the region spanning the internal transcribed spacer 2 (ITS2) and the 5.8S rRNA gene. To confirm the specificity of these primers, they were tested with different yeast species, acetic acid bacteria and lactic acid bacteria. The designed primers only amplified for the intended group of species and none of the PCR assays was positive for any other wine microorganisms. This technique was performed on reference yeast strains from pure cultures and validated with both artificially contaminated wines and real wine fermentation samples. To determine the effectiveness of the technique, the QPCR results were compared with those obtained by plating. The design of new primers for other important wine yeast species will enable to monitor yeast diversity during industrial wine fermentation and to detect the main spoilage yeasts in wine.  相似文献   

10.
Microbiology of the malolactic fermentation: Molecular aspects   总被引:4,自引:0,他引:4  
Abstract Malolactic fermentation conducted by lactic acid bacteria follows alcoholic fermentation during winemaking, and several positive effects make it indispensable for most wines. Research has focused on the growth and physiology of lactic acid bacteria in wine; resulting in the design of malolactic starter cultures. Future work on these starters will concentrate on aromatic changes as additional criteria for strain selection. Although the main features of the malolactic enzyme and its gene are known, the detailed mechanism of the malolactic reaction remains unclear. Cloning and expression of this activity in enological strains of Saccharomyces cereuisiae might be one of the next most important advances in the control of malic acid degradation in wine.  相似文献   

11.
Abstract Malolactic fermentation, a crucial step in winemaking, results mostly in degradation by lactic acid bacteria of L-malic acid into L-lactic acid. This direct decarboxylation is catalysed by the malolactic enzyme. Recently we, and others, have cloned the mleS gene of Lactococcus lactis encoding malolactic enzyme. Heterologous expression of mleS in Saccha-romyces cerevisiae was tested to perform simultaneously alcoholic and malolactic fermentations by yeast. mleS gene was cloned in a yeast multicopy vector under a strong promoter. Malolactic activity was present in crude extracts of recombinant yeasts. Malic acid degradation was tested during alcoholic fermentation in synthetic media and must. Yeasts expressing the mleS gene actually produced L-lactate from L-malate; nevertheless malate degradation was far from complete.  相似文献   

12.
Malolactic fermentation (MLF) is an integral step in red winemaking, which in addition to deacidifying wine can also influence the composition of volatile fermentation-derived compounds with concomitant affects on wine sensory properties. Long-established winemaking protocols for MLF induction generally involve inoculation of bacteria starter cultures post alcoholic fermentation, however, more recently there has been a trend to introduce bacteria earlier in the fermentation process. For the first time, this study shows the impact of bacterial inoculation on wine quality parameters that define red wine, including wine colour and phenolics, and volatile fermentation-derived compounds. This study investigates the effects of inoculating Shiraz grape must with malolactic bacteria at various stages of alcoholic fermentation [beginning of alcoholic fermentation (co-inoculation, with yeast), mid-alcoholic fermentation, at pressing and post alcoholic fermentation] on the kinetics of MLF and wine chemical composition. Co-inoculation greatly reduced the overall fermentation time by up to 6 weeks, the rate of alcoholic fermentation was not affected by the presence of bacteria and the fermentation-derived wine volatiles profile was distinct from wines produced where bacteria were inoculated late or post alcoholic fermentation. An overall slight decrease in wine colour density observed following MLF was not influenced by the MLF inoculation regime. However, there were differences in anthocyanin and pigmented polymer composition, with co-inoculation exhibiting the most distinct profile. Differences in yeast and bacteria metabolism at various stages in fermentation are proposed as the drivers for differences in volatile chemical composition. This study demonstrates, with an in-depth analysis, that co-inoculation of yeast and bacteria in wine fermentation results in shorter total vinification time and produces sound wines, thus providing the opportunity to stabilise wines more rapidly than traditional inoculation regimes permit and thereby reducing potential for microbial spoilage.  相似文献   

13.
Malolactic fermentation is a process that is influenced by various factors that can inhibit the growth of the malolactic bacteria. Inhibitory metabolites produced by yeast may have an important role in the correct development of malolactic fermentation. For these reasons, we have investigated the effects of such metabolites on the growth of malolactic bacteria under different environmental conditions, to aid in our understanding of the significance of these interactions in the wine-making environment. Our screening methods to detect interactions between yeast and malolactic bacteria showed a variable and wide diffusion of yeast inhibitory activity on the growth of the malolactic bacteria. However, this first approach to determine this inhibitory activity of yeast gave an overestimation when compared to the results obtained under actual wine-making conditions. The evaluation of malic acid consumption indicated that under inhibitory conditions a partial L-malic acid degradation was seen, indicating that the malolactic activity continued without bacterial growth. However, these yeast-inhibiting effects in addition to other environmental factors could cause a complete failure of malolactic fermentation.  相似文献   

14.
Five strains of Oenococcus oeni (syn. Leuconostoc oenos) under non-proliferating conditions were assessed for the performance of the malolactic fermentation in wine at various initial pH values, malic acid concentration and densities of cells. We succeeded in inducing the malolactic fermentation after inoculation of high densities of O. oeni G6 even in recalcitrant wines where the traditional malolactic fermentation was inhibited by adverse environmental conditions (low pH and high concentration of malic acid). Optimal degrading conditions in wine, under different physico-chemical environments, were determined in order to achieve rapid depletion of malic acid in red wine. Off-odour compounds were not formed under these conditions, suggesting an attractive alternative for wine production. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR   总被引:5,自引:0,他引:5  
AIMS: To develop a real-time polymerase chain reaction (PCR) method for rapid detection and quantification of Oenococcus oeni in wine samples for monitoring malolactic fermentation. METHODS AND RESULTS: Specific primers and fluorogenic probe targeted to the gene encoding the malolactic enzyme of O. oeni were developed and used in real-time PCR assays in order to quantify genomic DNA either from bacterial pure cultures or wine samples. Conventional CFU countings were also performed. The PCR assay confirmed to be specific for O. oeni species and significantly correlated to the conventional plating method both in pure cultures and wine samples (r = 0.902 and 0.96, respectively). CONCLUSIONS: The DNA extraction from wine and the real-time PCR quantification assay, being performed in ca 6 h and allowing several samples to be concurrently processed, provide useful tools for the rapid and direct detection of O. oeni in wine without the necessity for sample plating. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid quantification of O. oeni by a real-time PCR assay can improve the control of malolactic fermentation in wines allowing prompt corrective measures to regulate the bacterial growth.  相似文献   

16.
Ruminal lactic acid-producing bacteria were selectively isolated and enumerated using a one hour aerobic exposure prior to incubation on a semi-selective Lactobacillus medium, MRS, under anaerobic conditions. The technique allowed growth of pure cultures of ruminal Lactobacillus spp. and Streptococcus bovis without supporting the growth of pure cultures of any of the prominent ruminal bacterial species. In mixed cultures, the one hour aerobic pre-incubation inhibited the growth of the obligate anaerobic ruminal bacteria which can otherwise grow on the MRS medium, and the subsequent anaerobic incubation permitted maximal recovery of the weakly aerotolerant ruminal lactic acid-producing Lactobacillus spp. and Streptococcus spp. The efficacy of this technique in selecting exclusively for the lactic acid-producing bacteria was also demonstrated from populations of rumen bacteria from mixed culture end-point in vitro fermentation, continuous in vitro culture and isolations from fresh ruminal samples.  相似文献   

17.
The dynamics of fungi, yeasts, and lactic acid bacteria during fermentation of four musts were studied. Fungi disappeared quickly in the fermenting must. The lactic acid bacteria population diminished during alcoholic fermentation, then they increased and performed malolactic fermentation. Yeasts grew quickly, reaching maximum populations at different times depending on the vinification treatment.  相似文献   

18.
This work reports the influence of the high acidity and high phenolic content in apple musts on the development of alcoholic and malolactic fermentations and on the final chemical and microbiological composition of the ciders. Four different musts were obtained by pressing several varieties and proportions of cider apples from the Basque Country (Northern Spain). Specially acidic and phenolic varieties were selected. Three musts were obtained in experimental stations and the fourth one, in a cider factory following usual procedures. The evolution of these musts was monitored during five months by measuring 18 parameters throughout eight samplings. In the most acidic of the three experimental musts, yeasts were added to complete the alcoholic fermentation. In the rest of the musts, alcoholic and malolactic fermentations took place spontaneously due to natural microflora and no chemical was added to control these processes. Malolactic fermentation (MLF) finished before alcoholic fermentation in the three tanks obtained in experimental stations, even in the most acidic and phenolic one (pH 3.18, 1.78 g tannic acid/l). After four months, these ciders maintained low levels of lactic acid bacteria (10(4)CFU/ml) and low content of acetic acid (<0.60 g/l). Both fermentations began simultaneously in the must obtained in the cider factory, but MLF finished 10 days after alcoholic fermentation. Subsequently, this must maintained a high population of lactic acid bacteria (>10(6)CFU/ml), causing a higher production of acetic acid (>1.00 g/l) than in the other ciders. These results show the possible advantages of MLF finishing before alcoholic fermentation.  相似文献   

19.
Leuconostoc oenos and malolactic fermentation in wine: a review   总被引:1,自引:0,他引:1  
This review article summarizes the state of the art on Leuconostoc oenos, the bacteria responsible for malolactic fermentation in wine. Both basic and practical aspects related to the metabolism of this microorganism and malolactic fermentation in general are critically reviewed. The former examines the role of genetics for the identification and classification of L. oenos and energetic mechanisms on solute transport (malic and lactic acid). The latter includes practical information on biomass production, optimal growth conditions and stress factors, which are important in growth optimization of malolactic starter cultures. Extensive data and references on the effect of malolactic fermentation on wine composition and sensory analysis are also included. Received 06 May 1999/ Accepted in revised form 13 July 1999  相似文献   

20.
Lactic acid bacteria in the quality improvement and depreciation of wine   总被引:36,自引:0,他引:36  
The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 106CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteri a, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet c ompletely elucidated . Molecular biology has provided some explanations for the behaviour and the metabolism of bacteria in wine. New tools are now available to detect the presence of desirable and undesirable strains. Even if much remains unknown, winemakers and oenologists can nowadays better control the process. By acting upon the diverse microflora and grape musts, they are more able to produce healthy and pleasant wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号