首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured ΔA transient absorption spectra in the Soret region and kinetics of photodissociation of oxymyoglobin (MbO2) solutions following excitation by pulses of duration 350 fsec and 10 μJ energy at 307 nm. We observed an instantaneous bleaching of the absorbance at 414 nm and the appearance of a broad, red-shifted absorption band in the 438–470 nm region with a time constant of 250 fsec indicative of the formation of a short-lived deliganded Mb species which relaxes to the stable Mb with a constant of 3.5 psec. Following this early relaxation, changes in absorption kinetics indicate also a geminate recombination process of constant τ = 100 psec. These data demonstrate that the well established low quantum yield (φ = 0.03) of photodissociation in MbO2 is related both to the relaxation of an excited Mb state and to a fast geminate recombination process.  相似文献   

2.
Nitrite reduction to nitric oxide by heme proteins is drawing increasing attention as a protective mechanism to hypoxic injury in mammalian physiology. Here we probe the nitrite reductase (NiR) activities of manganese(II)- and cobalt(II)-substituted myoglobins, and compare with data obtained previously for the iron(II) analog wt MbII. Both MnIIMb and CoIIMb displayed NiR activity, and it was shown that the kinetics are first order each in [protein], [nitrite], and [H+], as previously determined for the FeII analog wt MbII. The second order rate constants (k2) at pH 7.4 and T = 25 °C, were 0.0066 and 0.015 M− 1 s− 1 for CoIIMb and MnIIMb, respectively, both orders of magnitude slower than the k2 (6 M− 1 s− 1) for wt MbII. The final reaction products for MnIIMb consisted of a mixture of the nitrosyl MnIIMb(NO) and MnIIIMb, similar to the products from the analogous NiR reaction by wt Mb. In contrast, the products of NiR by CoIIMb were found to be the nitrito complex CoIIIMb(ONO) plus roughly an equivalent of free NO. The differences can be attributed in part to the stronger coordination of inorganic nitrite to CoIIIMb as reflected in the respective MIIIMb(ONO) formation constants Knitrite: 2100 M− 1 (CoIII) and <~0.4 M− 1 (MnIII). We also report the formation constants (3.7 and 30 M− 1, respectively) for the nitrite complexes of the mutant metmyoglobins H64V MbIII(NO2) and H64V/V67R MbIII(ONO) and a Knitrite revised value (120 M− 1) for the nitrite complex of wt metMb. The respective Knitrite values for the three ferric proteins emphasize the importance of a H-bonding residue, such as His64 in the MbIII distal pocket or the Arg67 in H64V/V67R MbIII, in stabilizing nitrite coordination. Notably, the NiR activities of the corresponding ferrous Mbs follow a similar sequence suggesting that nitrite binding to these centers are analogously affected by the H-bonding residues.  相似文献   

3.
X-ray absorption near-edge structure (XANES) spectra of ferric myoglobin from horse heart have been acquired as a function of pH (between 5.3 and 11.3). At pH = 11.3 temperature-dependent spectra (between 20 and 293 K) have been collected as well. Experimental data solve three main conformations of the Fe-heme: the first, at low pH, is related to high-spin aquomet-myoglobin (Mb+OH2). The other two, at pH 11.3, are related to hydroxymet-myoglobin (Mb+OH-), and are in thermal equilibrium, corresponding to high- and low-spin Mb+OH-. The structure of the three Fe-heme conformations has been assigned according to spin-resolved multiple scattering simulations and fitting of the XANES data. The chemical transition between Mb+OH2 and high-spin Mb+OH-, and the spin transition of Mb+OH-, are accompanied by changes of the Fe coordination sphere due to its movement toward the heme plane, coupled to an increase of the axial asymmetry.  相似文献   

4.
Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (< 20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg+-Nω-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O2 states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg+-Nω-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC.  相似文献   

5.
Potassium release rates from ustisols and their application   总被引:1,自引:0,他引:1  
Lu  Xiaonan  Zhang  Minghua  Xu  Jianming 《Plant and Soil》2002,246(1):23-29
Second-order equations were used to characterize the potassium release rate for 20 low-hilly ustisols derived from Quaternary red clay in Zhejiang province, China. This was done under the condition of electric field strength of 44.4 and 88.8 V cm–1. The values of the initial K release rate (v 0) ranged from 1.17 to 21.23 and from 1.93 to 61.58, with an average of 5.36 and 9.54 mg kg–1 min–1 under the electric field strength of 44.4 and 88.8 V cm–1, respectively. Six indices, including the relative grain yield, relative total dry matter yield and K uptake in NP treatments of 20 corn field experiments and available K, HNO3 soluble K and slowly available K of soils were used to assess the practical applicability of K release rates. The correlation analysis showed that v 0 was very significantly correlated (P=0.01) with the above six indices, and their correlation coefficients were 0.6275**, 0.5645**, 0.6624**, 0.7277**, 0.7843** and 0.6299**, respectively, under the electric strength of 44.4 V cm–1. The v 0 was related to relative total dry matter yield (P = 0.05, r = 0.5445*) and very significantly correlated to the other five indices (relative grain yield, K uptake in NP treatment, available K, HNO3 soluble K and slowly available K), with the correlation coefficients of 0.6064**, 0.7216**, 0.7523**, 0.8202** and 0.6686**, respectively, under the electric strength of 88.8 V cm–1. From the results, we conclude that v 0 can be used to estimate the supplying power of soil K to annual crops such as corn, and to characterize soil K fertility.  相似文献   

6.
 A novel C 2-symmetric ring-fluorinated hemin, 13,17-bis(2-carboxyethyl)-2,8,12,18-tetramethyl-3,7-difluoroporphyrinatoiron(III), has been synthesized and was incorporated into sperm whale apomyoglobin to investigate protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin (Mb) using 19F NMR spectroscopy. NMR signals for 19F atoms introduced as substituents on the present heme in ferrous low-spin and high-spin and ferric low-spin complexes have been observed and their shifts sharply reflect not only the electronic nature of the heme iron, but also in-plane asymmetry of the heme electronic structure. The two-fold symmetric electronic structure of the ring-fluorinated hemin is clearly manifested in the 19F and 1H NMR spectra of its dicyano complex. The chemical equivalence of the two fluorine atoms of the heme is removed in the active site of myoglobin and the splitting of the two 19F NMR signals provides a quantitative probe for characterizing the rhombic perturbation of the heme electronic structure induced by the heme-protein interaction. The in-plane asymmetry of heme electronic structures in carbonmonoxy and deoxy Mbs have been analyzed for the first time on the basis of the shift difference between the two 19F NMR signals of the heme and is interpreted in terms of iron-ligand binding and/or the orbital ground state of the heme. A potential utility of 19F NMR, combined with the use of a symmetric fluorinated hemin, in characterizing the heme electronic structure of myoglobin in a variety of iron oxidation, spin, and ligation states, is presented. Received: 23 December 1999 / Accepted: 3 April 2000  相似文献   

7.
Multiple-scattering analysis of X-ray absorption fine structure data on the NO adducts of indoleamine 2,3-dioxygenase (IDO) and analysis of X-ray absorption near-edge structure (XANES) have provided the first direct structural information about the iron center for this ubiquitous mammalian metalloprotein. The IDO(II)NO adduct, which is likely to play a physiological role in the immune system, differs from similar adducts such as Mb(II)NO and Lb(II)NO in that the Fe-His bond is essentially broken. At 10 K, the Fe-N(p)(av) bond length = 2.00(2) A, Fe-NO bond length = 1.75 A, and angle = 140 degrees, which are typical of five-coordinate Fe(II)NO species. The XANES is also closer to that of five-coordinate model complexes than six-coordinate species. In addition to the Fe(II)NO species, there was a minor component of the Fe(III)NO adduct because of incomplete reduction of the Fe(II) species. This was also a five-coordinate center and consists of a linear Fe(II)NO(+) moiety with the Fe-N(p)(av) bond length = 2.00(2) A, Fe-NO bond length = 1.63(3) A, and angle = 179 degrees. The results indicate that both the blocking of the heme site to O(2) binding and conformational changes induced by breaking the Fe-N(epsilon) bond may be important mechanisms by which NO inhibits IDO in vitro and in vivo.  相似文献   

8.
Ribosome inactivating protein (RIP) catalyzes the cleavage of glycosidic bond formed between adenine and ribose sugar of ribosomal RNA to inactivate ribosomes. Previous structural studies have shown that RNA bases, adenine, guanine, and cytosine tend to bind to RIP in the substrate binding site. However, the mode of binding of uracil with RIP was not yet known. Here, we report crystal structures of two complexes of type 1 RIP from Momordica balsamina (MbRIP1) with base, uracil and nucleoside, uridine. The binding studies of MbRIP1 with uracil and uridine as estimated using fluorescence spectroscopy showed that the equilibrium dissociation constants (KD) were 1.2 × 10−6 M and 1.4 × 10−7 M respectively. The corresponding values obtained using surface plasmon resonance (SPR) were found to be 1.4 × 10−6 M and 1.1 × 10−7 M, respectively. Structures of the complexes of MbRIP1 with uracil (Structure-1) and uridine (Structure-2) were determined at 1.70 and 1.98 Å resolutions respectively. Structure-1 showed that uracil bound to MbRIP1 at the substrate binding site but its mode of binding was significantly different from those of adenine, guanine and cytosine. However, the mode of binding of uridine was found to be similar to those of cytidine. As a result of binding of uracil to MbRIP1 at the substrate binding site, three water molecules were expelled while eight water molecules were expelled when uridine bound to MbRIP1.  相似文献   

9.
Park J  Kim J  Lee T  Lim M 《Biophysical journal》2008,94(11):L84-L86
Femtosecond vibrational spectroscopy was used to probe a functionally important dynamics and residual structure of myoglobin unfolded by 4 M guanidine HCl. The spectra of the dissociated CO indicated that the residual structure of unfolded myoglobin (Mb) forms a few hydrophobic cavities that could accommodate the dissociated ligand. Geminate rebinding (GR) of CO to the unfolded Mb is three-orders-of-magnitude faster and more efficient than the native Mb but similar to a model heme in a viscous solvent, suggesting that the GR of CO to heme is accelerated by the longer retention of the dissociated ligand near the Fe atom by the poorly-structured protein matrix of the unfolded Mb or viscous solvent. The inefficient GR of CO in native Mb, while dissociated CO is trapped in the primary heme pocket located near the active binding site, indicates that the tertiary structure of the pocket in native Mb plays a functionally significant role.  相似文献   

10.
In this short review we show how suitable analysis of the temperature dependence of the optical absorption spectra of metalloproteins can give insight into their stereodynamic properties in the region of the chromophore. To this end, the theory of coupling between an intense allowed electronic transition of a chromophore and Franck-Condon active vibrations of the nearby atoms is applied to the Soret band of hemeproteins to obtain an analytical expression suitable for fitting the spectral profile at various temperatures. The reported approach enables one to separate the various contributions to the overall bandwidth together with the parameters that characterize the vibrational coupling. The thermal behavior of these quantities gives information on the dynamic properties of the active site and on their dependence upon protein structure and ligation state. The Soret band of hemeproteins appears to be coupled to high frequency vibrational modes of the heme group (as already shown by resonance Raman spectroscopy) and to a bath of low frequency modes most likely deriving from the bulk of the protein. For the deoxy derivatives inhomogeneous broadening arising from conformational heterogeneity appears to contribute substantially to the linewidth. The data indicate the onset; at temperatures near 180 K, of large scale anharmonic motions that can be attributed to jumping among different conformational substates of the protein.Abbreviations MbCO Carbonmonoxy-myoglobin - Mb Deoxymyoglobin - Mb3+ Aquomet-myoglobin - SWMbCO Spermwhale carbonmonoxy-myoglobin - SWMb Spermwhale deoxy-myoglobin Correspondence to: A. Cupane  相似文献   

11.
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10?4 M–10?7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors.  相似文献   

12.
Human serum heme–albumin (HSA–heme–Fe) displays reactivity and spectroscopic properties similar to those of heme proteins. Here, the nitrite reductase activity of ferrous HSA–heme–Fe [HSA–heme–Fe(II)] is reported. The value of the second-order rate constant for the reduction of $ {\text{NO}}_{2}^{ - } $ to NO and the concomitant formation of nitrosylated HSA–heme–Fe(II) (i.e., k on) is 1.3 M?1 s?1 at pH 7.4 and 20 °C. Values of k on increase by about one order of magnitude for each pH unit decrease between pH 6.5 to 8.2, indicating that the reaction requires one proton. Warfarin inhibits the HSA–heme–Fe(II) reductase activity, highlighting the allosteric linkage between the heme binding site [also named the fatty acid (FA) binding site 1; FA1] and the drug-binding cleft FA2. The dissociation equilibrium constant for warfarin binding to HSA–heme–Fe(II) is (3.1 ± 0.4) × 10?4 M at pH 7.4 and 20 °C. These results: (1) represent the first evidence for the $ {\text{NO}}_{2}^{ - } $ reductase activity of HSA–heme–Fe(II), (2) highlight the role of drugs (e.g., warfarin) in modulating HSA(–heme–Fe) functions, and (3) strongly support the view that HSA acts not only as a heme carrier but also displays transient heme-based reactivity.  相似文献   

13.
In this work we show that ligand migration and active site conformational relaxation can occur independently of each other in hemoproteins. The complicated kinetics of carbon monoxide rebinding with cytochrome P450cam display up to five distinct processes between 77 K and 300 K. They were disentangled by using a combination of three approaches: 1), the competition of the ligand with xenon for the occupation of internal protein cavities; 2), the modulation of the amount of distal steric hindrance within the heme pocket by varying the nature of the substrate; and 3), molecular mechanics calculations to support the proposed heme-substrate relaxation mechanism and to seek internal cavities. In cytochrome P450cam, active site conformational relaxation results from the displacement of the substrate toward the heme center upon photodissociation of the ligand. It is responsible for the long, puzzling bimodal nature of the rebinding kinetics observed down to 77 K. The relaxation rate is strongly substrate-dependent. Ligand migration is slower and is observed only above 135 K. Migration and return rates are independent of the substrate.  相似文献   

14.
A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV–visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A FeIII/FeII reduction potential of ?266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na+ ion) and proximal (assigned as a Ca2+) sides of the heme, which is consistent with the Ca2+-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.  相似文献   

15.
Elementary steps or geminate states in the reaction of gaseous ligands with transport proteins delineate the trajectory of the ligand and its rebinding to the heme. By use of kinetic studies of the 765-nm optical "conformation" band, three geminate states were identified for temperatures less than approximately 100 K. MbCO, which is accumulated by photolysis between 1.2 and approximately 10 K, was characterized by our previous optical and X-ray absorption studies [Chance, B., Fischetti, R., & Powers, L. (1983) Biochemistry 22, 3820-3829]. Between 10 and approximately 100 K, geminate states that are also identified that have recombination rates of approximately 10(3) s-1 and approximately 10(-5) s-1 (40 K). Thus, it is possible to maintain a steady-state nearly homogeneous population of the slowest recombining geminate state, Mb, by regulated continuous illumination (optical pumping). Both X-ray absorption and resonance Raman studies under similar conditions of optical pumping show that the heme structure around the iron in Mb is similar to that of MbCO. In both geminate states, the iron-proximal histidine distance remains unchanged (+/- 0.02 A) from that of MbCO while the iron to pyrrole nitrogen average distance has not fully relaxed to that of the deoxy state. In MbCO the CO remains close to iron but not bound, and the Fe...CO angle, which is bent in MbCO (127 +/- 4 degrees C), is decreased by approximately 15 degrees [Powers, L., Sessler, J. L., Woolery, G. L., & Chance, B. (1984) Biochemistry 23, 5519-5523]. The CO molecule in Mb, however, has moved approximately 0.7 A further from iron. Computer graphics modeling of the crystal structure of MbCO places the CO in a crevice in the heme pocket that is just large enough for the CO molecule end-on. Above approximately 100 K resonance Raman studies show that this structure relaxes to the deoxy state.  相似文献   

16.
Dynamic phase transformation in olivine LiFePO4 involving formation of one or more intermediate or metastable phases is revealed by an in situ time‐resolved X‐ray absorption near edge structure (XANES) technique. The XANES spectra measured during relaxation immediately after the application of relatively high overpotentials, where metastable phases are expected, show a continuous shift of the Fe K‐edge toward higher energy. Surprisingly, the Fe K‐edge relaxes to higher energies after current interrupt regardless of whether the cell is being charged or discharged. This relaxation phenomenon is superimposed upon larger shifts in K‐edge due to changes in Fe2+/Fe3+ ratio due to charging and discharging, and implies an intermediate phase of larger Fe? O bond length than any of the known crystalline phases. No intermediate crystalline phases are observed by X‐ray diffraction (XRD). A metastable amorphous phase formed during dynamic cycling and which structurally relaxes to the equilibrium crystalline phases over a time scale of about 10 min after cessation of charging/discharging current is consistent with the experimental observations.  相似文献   

17.
Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of l-Trp and other indoleamine derivatives. Using Fourier transform infrared and optical absorption spectroscopy, we have investigated the interplay between ferrous hIDO, the ligand analog CO, and the physiological substrate l-Trp. These data provide the long sought evidence for two distinct l-Trp binding sites. Upon photodissociation from the heme iron at T > 200 K, CO escapes into the solvent. Concomitantly, l-Trp exits the active site and, depending on the l-Trp concentration, migrates to a secondary binding site or into the solvent. Although l-Trp is spectroscopically silent at this site, it is still noticeable due to its pronounced effect on the CO association kinetics, which are significantly slower than those of l-Trp-free hIDO. l-Trp returns to its initial site only after CO has rebound to the heme iron.  相似文献   

18.
Iron uptake by the ubiquitous iron-storage protein ferritin involves the oxidation of two Fe(II) ions located at the highly conserved dinuclear “ferroxidase centre” in individual subunits. We have measured X-ray absorption spectra of four mutants (K86Q, K86Q/E27D, K86Q/E107D, and K86Q/E27D/E107D, involving variations of Glu to Asp on either or both sides of the dinuclear ferroxidase site) of recombinant human H-chain ferritin (rHuHF) in their complexes with reactive Fe(II) and redox-inactive Zn(II). The results for Fe–rHuHf are compared with those for recombinant Desulfovibrio desulfuricans bacterioferritin (DdBfr) in three states: oxidised, reduced, and oxidised/Chelex®-treated. The X-ray absorption near-edge region of the spectrum allows the oxidation state of the iron ions to be assessed. Extended X-ray absorption fine structure simulations have yielded accurate geometric information that represents an important refinement of the crystal structure of DdBfr; most metal–ligand bonds are shortened and there is a decrease in ionic radius going from the Fe(II) to the Fe(III) state. The Chelex®-treated sample is found to be partly mineralised, giving an indication of the state of iron in the cycled-oxidised (reduced, then oxidised) form of DdBfr, where the crystal structure shows the dinuclear site to be only half occupied. In the case of rHuHF the complexes with Zn(II) reveal a surprising similarity between the variants, indicating that the rHuHf dinuclear site is rigid. In spite of this, the rHuHf complexes with Fe(II) show a variation in reactivity that is reflected in the iron oxidation states and coordination geometries.  相似文献   

19.
In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb–SGO–Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb–SGO–Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around −0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (Eo′) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential.  相似文献   

20.
The heme electronic structures of deoxymyoglobins (deoxy-Mbs) reconstituted with 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-(trifluoromethyl)porphyrinatoiron(III) (7-PF), 13,17-bis(2-carboxylatoethyl)-3,7-difluoro-2,8,12,18-tetramethylporphyrinatoiron(III) (3,7-DF), and 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethylporphyrinatoiron(III) (2-MF) have been characterized by 1H and 19F NMR. The analysis of heme methyl proton shift patterns of the hemes in their bis-cyano forms demonstrated that, owing to the substitution of a strongly electron-withdrawing perfluoromethyl group, CF3, to porphyrin, the porphyrin -system of 7-PF is more significantly distorted from four-fold symmetry than those of the ring-fluorinated hemes, 3,7-DF and 2-MF. The presence of the heme orientation disorder resulted in the observation of the two well-resolved 19F signals in the spectra of deoxy-Mbs possessing 7-PF and 2-MF. The 19F signals of deoxy-Mb possessing 7-PF exhibited a relatively large difference in paramagnetic shift (~30 ppm), despite their small paramagnetic shifts (~30 ppm), supporting the significant contribution of a spin delocalization mechanism in this Mb due to the d-electron configuration derived from the 5E ground state. On the other hand, 19F signals of deoxy-Mbs with 3,7-DF as well as 2-MF exhibited large paramagnetic shifts (~250 ppm) with a relatively small difference in the paramagnetic shift (~20 ppm), indicating the predominant contribution of spin delocalization, due to a d-electron configuration derived from the 5B2 ground state. These results demonstrate for the first time that the relative contributions of the orbital ground states derived from 5E and 5B2 states to the heme electronic structure in deoxy-Mb are affected by the distortion of the porphyrin -system exerted by chemical properties of the heme peripheral side-chains.Abbreviations 3,7-DF 13,17-bis(2-carboxylatoethyl)-3,7-difluoro-2,8,12,18-tetramethylporphyrinatoiron(III) - 2-MF 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethylporphyrinatoiron(III) - 7-PF 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-(trifluoromethyl)porphyrinatoiron(III) - Mb myoglobin - Mb(7-PF) deoxy-Mb reconstituted with 7-PF - Mb(3,7-DF) deoxy-Mb reconstituted with 3,7-DF - Mb(2-MF) deoxy-Mb reconstituted with 2-MF - NOE nuclear Overhauser effect - NOESY nuclear Overhauser effect correlated spectroscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号