首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chronic respiratory load was produced in Wistar rats by tracheal binding to produce a twofold increase of pleural pressure oscillation amplitude during respiration. Eight weeks after the surgery, a higher proportion of type-I muscle fibers (MFI) in the costal diaphragm along with a greater MFI cross-section area and a higher succinate dehydrogenase activity in MFII in the crural diaphragm were observed. During recording the mechanical activity of ring preparations of diaphragm arteries under isometric conditions, an increase in endothelium-dependent relaxation was found, whereas endothelium-independent relaxation and arterial reactivity to noradrenaline did not change. Tracheal binding did not produce any changes of MF in the gastrocnemius muscle, but endothelium-dependent relaxation of gastrocnemius feed arteries was reduced. We conclude that chronic respiratory load affects the endothelial function in diaphragm arteries in a manner favorable for blood flow control in the diaphragm. Functional alterations in gastrocnemius arteries may be associated with the reduced locomotor activity of operated rats.  相似文献   

2.
Characteristics of the small arteries (with a diameter of 200-250 μm) feeding the medial gastrocnemius muscle and diaphragm were studied. Recording of the mechanical activity of ring segments under isometric conditions demonstrated that, similar to other arteries feeding the muscles with a high content of slow fibers, the diaphragm arteries are highly sensitive to adrenoceptor agonists and acetylcholine. The differences in the endothelium-dependent relaxation in response to acetylcholine were retained in the presence of L-NAME and diclofenac. The diaphragm and gastrocnemius arteries similarly responded to serotonin. On the other hand, a high innervation density was characteristic of the diaphragm arteries unlike the arteries of other slow muscles. The density of adrenergic nerve plexus in the diaphragm arteries was considerably higher than in the gastrocnemius arteries. The results suggest that the characteristics of small diaphragm arteries are determined not only by the oxidative capacity of diaphragm muscle fibers, but also by the fact that this is a respiratory muscle.  相似文献   

3.
Aerobic exercise training is associated with adaptive changes in skeletal muscles and their vascular bed; such changes in individual muscles may vary depending on their characteristics and recruitment. This study was aimed at comparing the effects of eight-week treadmill training on the locomotor and respiratory muscles in rats. The training course increased the aerobic performance in rats, which was evidenced by an increase in maximum O2 consumption and a decrease in the blood lactate concentration in ramp test. The succinate dehydrogenase activity was increased in the red portion of the gastrocnemius muscle, but not in the diaphragm of trained rats. Arterial segments were isolated from feed arteries and studied by wire myography. The relaxation in response to acetylcholine in gastrocnemius arteries in trained animals was higher as compared with controls (due to higher NO production), while contractile responses to noradrenaline (in the presence of propranolol) were not changed. On the contrary, the endothelial function of diaphragm arteries was not affected by training, but contractile responses to activation of α-adrenoceptors were markedly increased. Thus, aerobic training may increase the blood supply rate to both locomotor and respiratory muscles, but the underlying regulatory mechanisms are different. The results obtained allow us to reveal the physiological mechanisms that determine the physical performance of the body under conditions of compromised functioning of the respiratory system.  相似文献   

4.
An increase in the extracellular K+ concentration, which causes relaxation of arteries due to the activation of inwardly rectifying potassium channels, can occur in some organs under intensive metabolism, as well as endothelium-dependent hyperpolarization. The aim of this work was a comparison of the contribution of these channels in the regulation of the tone of arteries that supply skeletal muscles and the skin. The reactions of skin-region arteries (a subcutaneous artery and its branch) and gastrocnemius muscle arteries were recorded in the isometric mode. During the contraction caused by α1-adrenoceptor agonist, the relaxation reactions upon an increase in extracellular K+ concentration and on acetylcholine in the presence of inhibitors of NO-synthase and cyclooxygenase were recorded (to detect the effects of endothelium-dependent hyperpolarization). The muscle arteries at both effects showed a pronounced relaxation, which was strongly suppressed by Ba2+ ions (blockers of inwardly rectifying potassium channels); both reactions did not exceed 20% in the skin arteries. Thus, the regulatory effect of inwardly rectifying potassium channels in the muscle arteries is much higher than in the skin arteries which is consistent with the idea about the functioning of these arteries in the organism.  相似文献   

5.
BACKGROUND: Defective endothelium-dependent relaxation is observed in experimental and human diabetes mellitus. The nature of this defect is not fully understood but may involve decreased nitric oxide (NO) bioactivity due to enhanced production of reactive oxygen species (ROS). In this paper, we examine the benefits and actions of a novel NO-donating, antioxidant called 2-acetoxybenzoic acid 2-(2-nitrooxymethyl) phenyl ester, and denoted as NCX4016, on NO-mediated endothelium-dependent relaxation in normal arteries exposed to acute elevations in glucose or in arteries derived from chronic diabetic animals. MATERIAL AND METHODS: Intrinsic free radical scavenging by NO-NSAIDs in solution were evaluated using electron paramagnetic resonance (EPR) spectroscopy and spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In acute studies, normal rat aortas were exposed in tissue culture for 18 h to 5.5 mM or 40 mM in the presence or absence of NCX4016, a NO-donating NSAID unrelated to aspirin (NCX2216) or aspirin. Vascular reactivity of thoracic aortic rings to endothelium-dependent relaxation to acetylcholine in vitro was determined. For chronic hyperglycemia, diabetes was induced in rats by intravenous injection with streptozotocin. Vascular reactivity of thoracic aortic rings to endothelium-dependent relaxation to acetylcholine in vitro was determined after 8 wks in untreated animals or animals chronically-treated with NCX4016. Antioxidant efficacy in vivo was determined by measurement of plasma isoprostanes and by nuclear binding activity of NF-kappaB in nuclear fractions of aortae. RESULTS: Incubation with NCX4016 and NCX2216 produced a concentration-dependent inhibition of DMPO-OH formation indicating scavenging of hydroxyl radicals (HO(*)). In contrast, little efficacy to scavenge superoxide anion radicals was noted. Acute incubation of normal arteries with elevated glucose concentration caused inhibition of normal relaxation to acetylcholine. This impairment was prevented by co-incubation with NCX4106 but not by mannitol, the parent compound (aspirin) or by NCX2216. In addition, chronic treatment with NCX4016 prevented the development of defective endothelium-dependent relaxation to acetylcholine. This protection did not occur as a result to any changes in blood glucose concentration or hemoglobin glycation. Treatment with NCX4016 did decrease the elevation in plasma isoprostanes and normalized the diabetes-induced increase in NF-kappaB binding activity in nuclear fractions derived from aortic tissue. CONCLUSIONS: Collectively, these studies suggest that antioxidant interventions using NO-donating NSAIDs may provide an important novel therapeutic strategy to protect the diabetic endothelium.  相似文献   

6.
The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.  相似文献   

7.
We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.  相似文献   

8.
Although abundant evidence indicates that chronic hypoxia can induce pulmonary vascular remodeling, very little is known of the effects of chronic hypoxia on cerebrovascular structure and function, particularly in the fetus. Thus the present study explored the hypothesis that chronic hypoxemia also influences the size and shape of cerebrovascular smooth muscle and endothelial cells, with parallel changes in the reactivity of these cells to endothelium-dependent vasodilator stimuli. To test this hypothesis, measurements of endothelial and vascular smooth muscle cell size and density were made in silver-stained common carotid and middle cerebral arteries from term fetal and nonpregnant adult sheep maintained at an altitude of 3,820 m for 110 days. Chronic hypoxia induced an age-dependent remodeling that led to smooth muscle cells that were larger in fetal arteries but smaller in adult arteries. Chronic hypoxia also increased endothelial cell density in fetal arteries but reduced it in adult arteries. These combined effects resulted in an increased (adult carotid), decreased (adult middle cerebral), or unchanged (fetal arteries) per cell serosal volume of distribution for endothelial factors. Despite this heterogeneity, the magnitude of endothelium-dependent vasodilatation to A23187, measured in vitro, was largely preserved, although sensitivity to this relaxant was uniformly depressed. N(G)-nitro-L-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, and endothelium denudation each independently blocked A23187-induced vasodilation without unmasking any residual vasoconstrictor effect. Indomethacin did not significantly attenuate A23187-induced relaxation except in the hypoxic adult middle cerebral, where a small contribution of prostanoids was evident. Vascular sensitivity to exogenous nitric oxide (NO) was uniformly increased by chronic hypoxia. From these results, we conclude that chronic hypoxia reduced endothelial NO release while also upregulating some component of the NO-cGMP-PKG vasodilator pathway. These offsetting effects appear to preserve endothelium-dependent vasodilation after adaptation to chronic hypoxia.  相似文献   

9.
Diaphragm atrophy and weakness in cortisone-treated rats   总被引:3,自引:0,他引:3  
Despite frequent therapeutic use, the potential of corticosteroids to produce respiratory muscle myopathy is unknown. We studied effects of chronic steroid treatment on diaphragm mass and function. Eleven Sprague-Dawley rats were treated with cortisone acetate (100 mg.kg-1.day-1 im) for 10 days. Controls (injected with vehicle) included 11 freely eating rats and 11 animals pair fed to match food intake of cortisone rats. Steroid treatment depressed body weight 30% compared with controls. Mass of diaphragm, gastrocnemius, and extensor digitorum longus showed significant atrophy (30%); heart and soleus were unaffected. Isometric contractile properties of costal diaphragm strips were studied in vitro using direct stimulation. The force-frequency relationship was markedly depressed by steroid treatment, both at low and high frequencies. However, force developed per unit cross-sectional area was similar among all three groups, as were twitch characteristics. When stimulated every minute, forces developed by control strips fell progressively, whereas the forces of cortisone-treated strips remained unchanged. When stimulated every 5 s, the fall in force was not different between groups. We conclude that cortisone weakened the diaphragm by decreasing muscle mass but made the diaphragm more resistant to one form of fatigue in vitro.  相似文献   

10.
We have attempted to determine the chronic effects of doxorubicin, a commonly used anticancer agent, on vascular endothelium using an organ culture system. In rabbit mesenteric arteries treated with 0.3 microM doxorubicin for 7 days, rounding and concentrated nuclei and TUNEL-positive staining were observed in endothelial cells, indicating DNA damage and the induction of apoptosis. However, the endothelium-dependent relaxation induced by substance P and the expression of mRNA encoding endothelial NO synthase (eNOS) did not differ from those in control arteries. In arteries treated with a higher concentration (1 microM) of doxorubicin, apoptosis and damage to nuclei occurred in the endothelial cells at the third day of treatment, and the detachment and excoriation of endothelium from the tunica interna of the vascular wall were also observed. The impairment of endothelium-dependent relaxation was observed at the fifth day of the treatment with 1 microM doxorubicin. Additionally, apoptotic change in the smooth muscle layer was observed at this concentration of doxorubicin. Apoptotic phenomena were further confirmed by DNA fragmentation using isolated bovine aortic endothelial cells (BAECs) and A7r5 vascular smooth muscle cells, and it was revealed that BAECs are more sensitive than A7r5 to the apoptotic effect of doxorubicin. These results suggest that chronic treatment with doxorubicin at therapeutic concentrations induces apoptosis and excoriation of endothelial cells, which diminishes endothelium-dependent relaxation.  相似文献   

11.
Effect of chronic resistive loading on inspiratory muscles in rats   总被引:1,自引:0,他引:1  
The development of animal models of respiratory muscle training would be useful in studying the physiological effects of training. Hence, we studied the effects of chronic resistive loading (CRL) for 5 wk on mass, composition, and mechanics of inspiratory muscles in laboratory rats. CRL was produced by means of a tracheal cannula (loaded animals) and results were compared with sham-operated controls. Acutely, upper airway obstruction led to a doubling of inspiratory pleural pressure excursion and 25% decrease in respiratory rate. We observed no changes in lung pressure-volume curves, nor in the geometry of the respiratory system in loaded compared with control animals. Muscle mass normalized for body mass increased in the diaphragm (DI) and the wet weight-to-dry weight ratio increased in the sternomastoid (SM) in loaded compared with control animals. Loaded animals demonstrated a decrease in ether extractable (fat) content of the DI and SM muscles but not the gastrocnemius. For the DI there was no change in length at which active tension was maximal (Lo), but there was an increase in maximum tension at lengths close to Lo in loaded compared with control rats. Endurance did not change, although twitch tensions remained higher in loaded compared with control rats. We conclude that 1) alteration of inspiratory muscle structure and function occurs in rats with CRL; 2) the DI and SM demonstrate different adaptive responses to CRL; and 3) although maximum tension increases, endurance does not.  相似文献   

12.
A deficiency of tetrahydrobiopterin (BH4), a NO-synthase co-factor, results in reactive oxygen species synthesis by NO-synthase. It leads to disturbances of endothelium-dependent vasorelaxation. We performed our study on the monocrotaline model of pulmonary hypertension. A decrease in endothelium-dependent relaxation was observed only in intrapulmonary arteries of monocrotaline-treated rats. A perfusion of BH4 (0.1 mol/liter) increased significantly endothelium-dependent dilation of hypertensive pulmonary arteries (p < 0.01). But BH4 did not influence the relaxation of systemic vessels and the dilation responses of pulmonary and systemic arteries of control rats. Measuring of superoxide by lucigenin-mediated chemiluminescence showed five-fold O2- production in intrapulmonary arteries of pulmonary hypertensive rats, that was activated by acetylcholine and inhibited by a nonselective NO-synthase blocker (L-NAME). However, activity of NO-synthase measured as [H3]arginine to [H3]citrulline conversion and assessed in pulmonary vessels and aortic tissue, did not differ in control and monocrotaline-treated groups. These data suggest, that there is a local deficiency of BH4--in pulmonary vessels, without significant changes of systemic circulation.  相似文献   

13.
Huang Y  Bourreau JP  Chan HY  Lau CW  Wong JW  Yao X 《Life sciences》2001,69(14):1661-1672
Apart from the well-described K+ channel blocking effects in vascular smooth muscle cells, monovalent quaternary ammonium ions may also interact with endothelial cells in the endothelium-intact mammalian arteries. The present study was aimed to examine the effect of tetrabutylammonium ions on endothelium-dependent and -independent relaxation in the rat isolated aortic rings. Pretreatment with tetrabutylammonium concentration dependently reduced the endothelium-dependent relaxation induced by acetylcholine, cyclopiazonic acid and ionomycin. Tetrabutylammonium also inhibited endothelium-independent relaxation induced by hydroxylamine or nitroprusside. Pretreatment of endothelium-denuded rings with tetrabutylammonium did not affect relaxation induced by NS1619 or by diltiazem. In contrast, tetrabutylammonium significantly reduced the pinacidil- or cromakalim-induced relaxation. Tetrabutylammonium also inhibited the acetylcholine- but not nitroprusside-induced increase of tissue content of cyclic GMP in the aortic rings. The present study indicates that tetrabutylammonium ions could inhibit endothelial and exogenous nitric oxide-mediated aortic relaxation while it had no effect on relaxation induced by activation of Ca2+-activated K+ channels (by NS1619) or by inhibition of voltage-gated Ca2+ channels (by diltiazem). The inhibitory effect on pinacidil- and cromakalim-induced relaxation suggests that tetrabutylammonium ions also inhibit ATP-sensitive K+ channels in aortic smooth muscle cells.  相似文献   

14.
Only few data are available on the effect of training on phospholipid metabolism in skeletal muscles. The aim of the present study was to examine the effect of 6 weeks of endurance training on the content of particular phospholipid fractions and on the incorporation of blood-borne [14C]-palmitic acid into the phospholipids in different skeletal muscles (white and red sections of the gastrocnemius, the soleus and the diaphragm) of the rat. Lipids were extracted from the muscles and separated using thin-layer chromatography into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, cardiolipin and neutral lipids (this fraction being composed mostly of triacylglycerols). It was found that training did not affect the content of any phospholipid fraction in soleus muscle. It increased the content of sphingomyelin in white gastrocnemius muscle, cardiolipin and phosphatidylethanolamine in red gastrocnemius muscle and phosphatidylinositol in white gastrocnemius muscle and diaphragm. The total phospholipid content in red gastrocnemius muscle of the trained group was higher than in the control group. Training reduced the specific activity of sphingomyelin and cardiolipin in all muscles, phosphatidylcholine in soleus, red, and white gastrocnemius muscles, phosphatidylserine in all muscles, phosphatidylinositol in all except the soleus muscle, and phosphatidylethanolamine in hindleg muscles, but not in the diaphragm compared to the corresponding values in the sedentary group. It was concluded that endurance training affects skeletal muscle phospholipid content and the rate of incorporation of the blood-borne [14C]palmitic acid into the phospholipid moieties.  相似文献   

15.
Microgravity effects were studied on three muscles: gastrocnemius lateralis, plantaris and diaphragm, after the biocosmos 1514 and 1667 space flights. Results showed a decrease of maximal mechanical activity on both gastrocnemius and plantaris while no modification was observed on diaphragm. Cross-bridge cycling speed was reduced on both gastrocnemius and plantaris. Moreover, a reduced calcium binding affinity appeared in gastrocnemius.  相似文献   

16.
We tested the hypothesis that aging decreases endothelium-dependent vasodilation in feed arteries perfusing rat skeletal muscle. In addition, we tested the hypothesis that attenuated vasodilator responses are associated with decreased endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) expression. Soleus feed arteries (SFA) and gastrocnemius feed arteries (GFA) were isolated from young (4 mo) and old (24 mo) male Fischer 344 rats. Feed arteries from the right hindlimb were cannulated with two glass micropipettes for examination of endothelium-dependent [acetylcholine (ACh)] and endothelium-independent [adenosine (Ado) or sodium nitroprusside (SNP)] vasodilator function. Feed arteries from the left hindlimb were frozen and used to assess eNOS and SOD-1 protein and mRNA expression. In SFA, endothelium-dependent dilation to ACh was reduced in old rats (0.9 +/- 0.04 vs. 0.8 +/- 0.03), whereas dilator responses to Ado and SNP were similar in SFA of young and old rats. In GFA, vasodilator responses to ACh, Ado, and SNP were not altered by age. eNOS and SOD-1 protein expression declined with age in SFA (-71 and -54%, respectively) but not in GFA. eNOS and SOD-1 mRNA expression were not altered by age in SFA or GFA. Collectively, these data indicate aging induces muscle-specific impairment of endothelium-dependent vascular function in SFA.  相似文献   

17.
The amount of radical scavenging activity in muscle is unknown. The present study examines whether electron spin resonance (ESR) could measure and distinguish antioxidant capacity in muscle with different contractile and metabolic characteristics. Specimens of the soleus, plantaris, gastrocnemius (deep/surface portions), heart and diaphragm were obtained from female Wistar rats (n=7; 12 weeks old). Scavenging activity against superoxide anions in these specimens were determined by ESR using a spin-trapping chemical (5,5-dimethyl-1-pyrroline-N-oxide). The ESR signal intensity of reaction mixtures containing muscle tissues was significantly lower in the heart, soleus, diaphragm and deep portion of the gastrocnemius than in the plataris and surface portion of the gastrocnemius. Thus, the amount of scavenging activity converted into superoxide dismutase activity was the highest in the heart, and higher in the soleus, diaphragm and deep portion of the gastrocnemius than in other muscles (ANOVA, P<0.01). In addition, scavenging activity significantly correlated with citrate synthase activity (r=0.72, P<0.01, n=42) and myoglobin content (r=0.63, P<0.01, n=42). These findings suggested that ESR and spin-trapping can be detect differences in free radical scavenging activity among muscle tissues with different metabolic characteristics.  相似文献   

18.
The aim of this study was to analyze the effects of chronic administration of the beta(2)-agonist clenbuterol (1.5 mg x kg(-1) x day(-1) for 4 wk in the drinking water) on respiratory (diaphragm and parasternal intercostal) and hindlimb (tibialis and soleus) muscles in young rats during postnatal development (21 to 49 postnatal days). The treatment resulted in very little stimulation of muscle growth. Significant slow-to-fast transitions in the expression of myosin heavy chain isoforms and significant increases in the myofibrillar ATPase activity were found in the diaphragm and soleus, whereas tibialis anterior and intercostal muscles did not show any significant fiber-type alteration. Decrease of oxidative enzyme activities and increase of glycolytic enzyme activities were also observed. It is concluded that whereas the growth stimulation is age dependent and only detectable in adult rats, the fiber-type transformation is also present in weaning rats and particularly evident in the soleus and diaphragm. The fiber-type transformation caused by clenbuterol might lead to an enhancement of contractile performance and also to a reduced resistance to fatigue.  相似文献   

19.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

20.
Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2) derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF) and lean (LZ) rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine)-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats). Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox) expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot) was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats) level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号