首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
Clavulanic acid is a secondary metabolite produced by Streptomyces clavuligerus. It possesses a clavam structure and a characteristic 3R,5R stereochemistry essential for action as a β-lactamase inhibitory molecule. It is produced from glyceraldehyde-3-phosphate and arginine in an eight step biosynthetic pathway. The pathway is carried out by unusual enzymes, such as (1) the enzyme condensing both precursors, N 2-(2-carboxyethyl)-arginine (CEA) synthetase, (2) the β-lactam synthetase cyclizing CEA and (3) the clavaminate synthetase, a well-characterized multifunctional enzyme. Genes for biosynthesis of clavulanic acid and other clavams have been cloned and characterized. They offer new possibilities for modification of the pathway and for obtaining new molecules with a clavam structure. The state of the regulatory proteins controlling clavulanic acid biosynthesis, as well as the relationship between the biosynthetic pathway of clavulanic acid and other clavams, is discussed. Received: 9 February 2000 / Received revision: 10 May 2000 / Accepted: 12 May 2000  相似文献   

2.
3.
Penicillins, cephalosporins and cephamycins are peptide antibiotics synthesized by condensation of l-α-aminoadipic acid, l-cysteine and l-valine to form the tripeptide δ(l-α-aminoadipyl)-l-cysteinyl-d-valine (Aad-Cys-Val) by a non-ribosomal peptide synthetase. The genes pcbAB and pcbC, common to all penicillin and cephalosporin producers, that encode the Aad-Cys-Val synthetase1 and isopenicillin N (IPN) synthase1 respectively, have been cloned and the encoded enzymes studied in detail. The IPN synthase has been crystallized and its active center identified, providing evidence for the molecular mechanism of cyclization of the tripeptide Aad-Cys-Val to isopenicillin N. The late genes of the penicillin and cephalosporin pathways have also been characterized although some of the molecular mechanisms catalyzed by the encoded enzymes (e.g. IPN acyltransferase) are still obscure. In cephamycin-producing organisms, biosynthesis of the α-aminoadipic acid precursor proceeds in two steps catalyzed by lysine 6-aminotransferase and piperideine-6-carboxylic acid dehydrogenase. The gene lat for the first of these enzymes is located in the cephamycin gene cluster, providing an interesting example of association of genes encoding enzymes for the formation of a precursor with genes involved in assembly of the antibiotics. Novel enzymes involved in methoxylation at C-7 and carbamoylation at C-3′ of the cephem nucleus were isolated from Nocardia lactamdurans and Streptomyces clavuligerus. The methoxylation system is encoded by two linked genes cmcI-cmcJ and their products (proteins P7 and P8) form a complex that is required for hydroxylation at C-7 and for the subsequent methylation of the 7-hydroxycephem derivative to form the methoxyl group. Carbamoylation at the C-3′-hydroxyl group of the cephem nucleus is catalyzed by a specific carbamoyltransferase encoded by the gene cmcH. Finally, genes for a β-lactamase (bla), a penicillin-binding protein (pbp) and a transmembrane protein (cmcT) that appears to be involved in cephamycin exportation, are clustered together with the biosynthetic genes in the cephamycin clusters of S. clavuligerus and N. lactamdurans. Availability of the cloned genes allows metabolic engineering of the β-lactam biosynthetic pathways such as a channelling precursors and directed removal of bottlenecks in the β-lactam biosynthetic pathways. Several new β-lactam antibiotics have been discovered in gram-positive and gram-negative bacteria that will provide new genes for combinatorial synthesis of new molecules. Received: 2 December 1997 / Received revision: 20 February 1998 / Accepted: 24 February 1998  相似文献   

4.
The biosynthesis of clavulanic acid and related clavam metabolites is only now being elucidated. Understanding of this pathway has resulted from a combination of both biochemical studies of purified biosynthetic enzymes, and molecular genetic studies of the genes encoding these enzymes. Clavulanic acid biosynthesis has been most thoroughly investigated in Streptomyces clavuligerus where the biosynthetic gene cluster resides immediately adjacent to the cluster of cephamycin biosynthetic genes. A minimum of eight structural genes have been implicated in clavulanic acid biosynthesis, although more are probably involved. While details of the early and late steps of the pathway remain unclear, synthesis proceeds from arginine and pyruvate, as the most likely primary metabolic precursors, through the monocyclic -lactam intermediate, proclavaminic acid, to the bicyclic intermediate, clavaminic acid, which is a branch point leading either to clavulanic acid or the other clavams. Conversion of clavaminic acid to clavulanic acid requires side chain modfication as well as inversion of ring stereochemistry. This stereochemical change occurs coincident with acquisition of the -lactamase inhibitory activity which gives clavulanic acid its therapeutic and commercial importance. In contrast, the other clavam metabolites all arise from clavaminic acid with retention of configuration and lack -lactamase inhibitory activity.  相似文献   

5.
6.
The purification of clavulanic acid (CA), which is an important β-lactam antibiotic produced by submerged cultivation of Streptomyces clavuligerus, was studied through the use of phosphate and polyethylene glycol-based aqueous two-phase systems. The parameters’ effect on the yield and purification was evaluated through an experimental design and the preliminary results showed that the polyethylene molecular mass and tie-line length and phase volume ratio exerted the strongest effect on the yield and distribution coefficient in the range tested. In addition, the response surface methodology was used to optimize the distribution coefficient, yield, and purification factor. The optimal conditions of yield and purification factor are in the regions where polyethylene has a low molecular mass, pH close to the isoelectric point, and lower top phase volume. A 100% yield and a 1.5-fold purification factor are obtained when extracting CA by maximizing the conditions of an aqueous two-phase system.  相似文献   

7.
 The bla gene of the cephamycin cluster of Nocardia lactamdurans has been subcloned in the shuttle plasmids pULVK2 and pULVK2A and amplified in N. lactamdurans LC411. The transformants showed two- to threefold higher β-lactamase activity. Formation of β-lactamase preceded the onset of cephamycin biosynthesis. The β-lactamase of N. lactamdurans inactivated penicillins and, to a lesser extent, cephalosporin C but did not hydrolyse cephamycin C. This β-lactamase was highly sensitive to clavulanic acid (50% inhibition was observed at 0.48 μg/ml clavulanic acid). The N. lactamdurans bla gene was disrupted in vivo by inertion of the kanamycin-resistance gene. Three bla-disrupted mutants, BD4, BD8 and BD12, were selected that lacked β-lactamase activity. Overexpresion of the bla gene resulted in N. lactamdurans transformants that were resistant to penicillin whereas mutants in which the bla gene was disrupted were supersensitive to this antibiotic. The three N. lactamdurans mutants with the bla gene disrupted showed a significant increase of cephamycin biosynthesis in solid medium, whereas transformants with the amplified bla gene produced reduced levels of cephamycin. The cephamycin-overproducing Merck strain N. lactamdurans MA4213 showed no detectable levels of β-lactamase activity. The β-lactamase plays a negative role in cephamycin biosynthesis in solid medium, but not in liquid medium. Received: 26 July 1995/Received revision: 18 December 1995/Accepted: 8 January 1996  相似文献   

8.
Rotating bioreactors designed at NASA’s Johnson Space Center were used to simulate a microgravity environment in which to study secondary metabolism. The system examined was β-lactam antibiotic production by Streptomyces clavuligerus. Both growth and β-lactam production occurred in simulated microgravity. Stimulatory effects of phosphate and L-lysine, previously detected in normal gravity, also occurred in simulated microgravity. The degree of β-lactam antibiotic production was markedly inhibited by simulated microgravity. Received 17 May 1996/ Accepted in revised form 27 August 1996  相似文献   

9.
Summary Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid.  相似文献   

10.
Glycerol at 10–20 g l–1 increased clavulanic acid production by Streptomyces clavuligerus in shake-flask culture. The biosynthesis of clavulanic acid continued for longer by feeding glycerol and production increased to 250 mg l–1 compared with 115 mg l–1 without feeding. In fermenter batch culture, degradation of clavulanic acid began after 72 h. With glycerol feeding in fed-batch culture, clavulanic acid production was not only increased further to about 280 mg l–1 but also remained stable up to 130 h.  相似文献   

11.
Summary In the last decade numerous genes involved in the biosynthesis of antibiotics, pigments, herbicides and other secondary metabolites have been cloned. The genes involved in the biosynthesis of penicillin, cephalosporin and cephamycins are organized in clusters as occurs also with the biosynthetic genes of other antibiotics and secondary metabolites (see review by Martín and Liras [65]). We have cloned genes involved in the biosynthesis of -lactam antibiotics from five different -lactam producing organisms both eucaryotic (Penicillium chrysogenum, Cephalosporium acremonium (syn.Acremonium chrysogenum) Aspergillus nidulans) and procaryotic (Nocardia lactamdurans, Streptomyces clavuligerus). InP. chrysogenum andA. nidulans the organization of thepcbAB,pcbC andpenDE genes for ACV synthetase, IPN synthase and IPN acyltransferase showed a similar arrangement. InA. chrysogenum two different clusters of genes have been cloned. The cluster of early genes encodes ACV synthetase and IPN synthase, whereas the cluster of late genes encodes deacetoxycephalosporin C synthetase/hydroxylase and deacetylcephalosporin C acetyltransferase. InN. lactamdurans andS. clavuligerus a cluster of early cephamycin genes has been fully characterized. It includes thelat (for lysine-6-aminotransferase),pcbAB (for ACV synthase) andpcbC (for IPN synthase) genes. Pathway-specific regulatory genes which act in a positive (or negative) form are associated with clusters of genes involved in antibiotic biosynthesis. In addition, widely acting positive regulatory elements exert a pleiotropic control on secondary metabolism and differentiation of antibiotic producing microorganisms.The application of recombinant DNA techniques will contribute significantly to the improvement of fermentation organisms.  相似文献   

12.
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for β-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M r of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protein was purified. The cloned gene was used to construct a plasmid containing a hom disruption cassette which was then transformed into S. clavuligerus. A hom mutant of S. clavuligerus was obtained by insertional inactivation via double crossover, and the effect of hom gene disruption on cephamycin C yield was investigated by comparing antibiotic levels in culture broths of this mutant and in the parental strain. Disruption of hom gene resulted in up to 4.3-fold and twofold increases in intracellular free l-lysine concentration and specific cephamycin C production, respectively, during stationary phase in chemically defined medium.  相似文献   

13.
14.
We developed a colorimetric assay to quantify clavulanic acid (CA) in culture broth of Streptomyces clavuligerus, to facilitate screening of a large number of S. clavuligerus mutants. The assay is based on a β-lactamase-catalyzed reaction, in which the yellow substrate nitrocefin (λ max=390 nm) is converted to a red product (λ max=486 nm). Since CA can irreversibly inhibit β-lactamase activity, the level of CA in a sample can be measured as a function of the A 390/A 486 ratio in the assay mixture. The sensitivity and detection window of the assay were determined to be 50 μg L−1 and 50 μg L−1 to 10 mg L−1, respectively. The reliability of the assay was confirmed by comparing assay results with those obtained by HPLC. The assay was used to screen a pool of 65 S. clavuligerus mutants and was reliable for identifying CA over-producing mutants. Therefore, the assay saves time and labor in large-scale mutant screening and evaluation tasks. The detection window and the reliability of this assay are markedly better than those of previously reported CA assays. This assay method is suitable for high throughput screening of microbial samples and allows direct visual observation of CA levels on agar plates.  相似文献   

15.
Cell-free extracts from Streptomyces clavuligerus, purified by elution from heparin-agarose with an ARE-containing DNA fragment or by salt elution chromatography, bind to a 26 nt ARE sequence, for butyrolactone receptor proteins (AREccaR). This sequence is located upstream of the ccaR gene, encoding the activator protein CcaR required for clavulanic acid and cephamycin C biosynthesis. The binding is specific for the ARE sequence as shown by competition with a 34 nt unlabelled probe identical to the ARE sequence. A brp gene, encoding a butyrolactone receptor protein, was cloned from S. clavuligerus. Sixty-one nucleotides upstream of brp another ARE sequence (AREbrp) was found, suggesting that Brp autoregulates its expression. Pure recombinant rBrp protein binds specifically to the ARE sequences present upstream of ccaR and brp. A brp-deleted mutant, S. clavuligerus Δbrp::neo1, produced 150–300% clavulanic acid and 120–220% cephamycin C as compared with the parental strain, suggesting that Brp exerts a repressor role in antibiotic biosynthesis. EMSA assays using affinity chromatography extracts from the deletion mutant S. clavuligerus Δbrp::neo1 lacked a high-mobility band-shift due to Brp but still showed a slow-mobility band-shift observed in the wild-type strain. These results indicate that two different proteins bind specifically to the ARE sequence and modulate clavulanic acid and cephamycin C biosynthesis by its action on ccaR gene expression.  相似文献   

16.
Cephamycin C is an extracellular broad spectrum β-lactam antibiotic produced by Streptomyces clavuligerus, S. cattleya and Nocardia lactamdurans. In the present study, different substrates for solid-state fermentation were screened for maximum cephamycin C production by S. clavuligerus NT4. The fermentation parameters such as substrate concentration, moisture content, potassium dihydrogen phosphate, inoculum size and ammonium oxalate were optimized by response surface methodology (RSM). The optimized conditions yielded 21.68 ± 0.76 mg gds−1 of cephamycin C as compared to 10.50 ± 1.04 mg gds−1 before optimization. Effect of various amino acids on cephamycin C production was further studied by using RSM, which resulted in increased yield of 27.41 ± 0.65 mg gds−1.  相似文献   

17.
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.  相似文献   

18.
19.
Carbapenems are β-lactam antibiotics which have an increasing utility in chemotherapy, particularly for nosocomial, multidrug-resistant infections. Strain GS101 of the bacterial phytopathogen, Erwinia carotovora , makes the simple β-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have mapped and sequenced the Erwinia genes encoding carbapenem production and have cloned these genes into Escherichia coli where we have reconstituted, for the first time, functional expression of the β-lactam in a heterologous host. The carbapenem synthesis gene products are unrelated to enzymes involved in the synthesis of the so-called sulphur-containing β-lactams, namely penicillins, cephamycins and cephalosporins. However, two of the carbapenem biosynthesis genes, carA and carC , encode proteins which show significant homology with proteins encoded by the Streptomyces clavuligerus gene cluster responsible for the production of the β-lactamase inhibitor, clavulanic acid. These homologies, and some similarities in genetic organization between the clusters, suggest an evolutionary relatedness between some of the genes encoding production of the antibiotic and the β-lactamase inhibitor. Our observations are consistent with the evolution of a second major biosynthetic route to the production of β-lactam-ring-containing antibiotics.  相似文献   

20.
In Penicillium chrysogenum, the industrial producer of the β-lactam antibiotic penicillin, generating gene replacements for functional analyses is very inefficient. Here, we constructed a recipient strain that allows efficient disruption of any target gene via homologous recombination. Following isolation of the Pcku70 (syn. hdfA) gene encoding a conserved eukaryotic DNA-binding protein involved in non-homologous end joining (NHEJ), a Pcku70 knockout strain was constructed using a novel nourseothricin-resistance cassette as selectable marker. In detailed physiological tests, strain ΔPcku70 showed no significant reduction in vegetative growth due to increased sensitivity to different mutagenic substances. Importantly, deletion of the Pcku70 gene had no effect on penicillin biosynthesis. However, strain ΔPcku70 exhibits higher sensitivity to osmotic stress than the parent strain. This correlated well with comparative data from microarray analyses: Genes related to the stress response are significantly up-regulated in the Pcku70 deletion mutant. To demonstrate the applicability of strain ΔPcku70, three genes related to β-lactam antibiotic biosynthesis were efficiently disrupted, indicating that this strain shows a low frequency of NHEJ, thus promoting efficient homologous recombination. Furthermore, we discuss strategies to reactivate Pcku70 in strains successfully used for gene disruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号