首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the relative roles of basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGF-b) on bovine aortic endothelial cell mitogenesis and morphogenesis using two-dimensional Petri dish cultures and a threedimensional hydrated collagen gel. bFGF alone stimulated endothelial cell proliferation with an EC50 of 0.5 ng/ml. At bFGF levels greater than 2.5 ng/ml, morphologic alterations in confluent monolayers predominated; cells changed from a cobblestone morphology to an elongated cell pattern and showed enhanced migration into a denuded area of a Petri dish. In the three-dimensional model, exposure of endothelial cell monolayers to high bFGF levels stimulated minor cell migration directly under the monolayer but no invasion into the gel matrix. In combination with bFGF, heparin potentiated morphogenic changes, but not mitogenesis. bFGF, modification of the antiproliferative effect of TGF-b in confluent cultures was evidenced by induction of endothelial cell sprouting in response to 0.5 ng/ml TGF-b and 10–20 ng/ml bFGF in two-dimensional cultures. On collagen gels, endothelial cells migrated into the deep layers of the gel in a dose-dependent manner: invasion was maximal at 0.3–0.7 ng/ml TGF-b with decreased invasion at higher concentrations. The optimal collagen concentration that supported cell invasion was 0.075% collagen with the number of invading cells decreasing with increasing collagen gel density. By scanning electron microscopy, invading endothelial cells assumed a fibroblast-like appearance with slender cell extensions. We concluded that bFGF and TGF-b had independent effects on endothelial cell morphology and mitogenesis in culture. In combination at specific doses, these agents stimulated sprouting in the two-dimensional model and cell invasion in a collagen gel model. Morphogenic changes may be the primary event in determining angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Confluent cultures of aortic endothelial cells contain two different cell-cell adhesion mechanisms distinguished by their requirement for calcium during trypsinization and adhesion. A hybridoma clone was isolated producing a monoclonal antibody Ec6C10, which inhibits Ca2(+)-dependent adhesion of endothelial cells. There was no inhibition of Ca2(+)-independent adhesion of endothelial cells and only a minor effect on Ca2(+)-dependent adhesion of smooth muscle cells. Immunoblotting analysis shows that the antibody Ec6C10 recognizes a protein in endothelial but not epithelial cells with an apparent molecular weight of 135,000 in reducing conditions and 130,000 in non-reducing conditions. Monoclonal antibody Ec6C10 reacts with an antigen at the cell surface as shown by indirect immunofluorescence of confluent endothelial cells in a junctional pattern outlining the cobblestone morphology of the monolayer. Removal of extracellular calcium increased the susceptibility of the antigen recognized by antibody Ec6C10 to proteolysis by trypsin. The role of the Ca2(+)-dependent cell adhesion molecule in organization of the dense peripheral microfilament band in confluent endothelial cells was examined by adjusting the level of extracellular calcium to modulate cell-cell contact. Addition of the monoclonal antibody Ec6C10 at the time of the calcium switch inhibited the extent of formation of the peripheral F-actin band. These results suggest an association between cell-cell contact and the peripheral F-actin band potentially through the Ca2(+)-dependent CAM.  相似文献   

3.
Keratinocytes and fibroblasts isolated from human neonatal foreskin can be plated and grown through multiple rounds of division in vitro under defined serum-free conditions. We utilized these growth conditions to examine the mitogenic potential of acidic and basic fibroblast growth factor (aFGF and bFGF) on these cells. Our results demonstrate that both aFGF and bFGF can stimulate the proliferation of keratinocytes and fibroblasts. aFGF is a more potent mitogen than bFGF for keratinocytes. In contrast, bFGF appears to be more potent than aFGF in stimulating the growth of fibroblast cultures. Heparin sulfate (10 micrograms/ml) dramatically inhibited the ability of bFGF to stimulate the proliferation of keratinocytes. In comparison, heparin slightly inhibited the stimulatory effect of aFGF and had no effect on epidermal growth factor (EGF) stimulation in keratinocyte cultures. In fibroblast cultures the addition of heparin enhanced the mitogenic effect of aFGF, had a minimal stimulatory effect on the mitogenic activity of bFGF, and had no effect on EGF-stimulated growth. Our results demonstrate that the proliferation in vitro of two normal cell types found in the skin can be influenced by aFGF and bFGF and demonstrate cell-type specific differences in the responsiveness of fibroblasts and keratinocytes to these growth factors and heparin.  相似文献   

4.
Nerve growth factor (NGF) and acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) induce neurite outgrowth from the rat pheochromocytoma cell line, PC12. The neurites induced by these three factors are stable for up to a month in cell culture in the continued presence of any of the above growth factors. bFGF (ED50 = 30 pg/ml) is 800 fold more potent in stimulating neurite outgrowth than aFGF (ED50 = 25 ng/ml) and 260 fold more potent than NGF (ED50 = 8 ng/ml). While the neurotropic activities of aFGF and NGF are potentiated by heparin, that of bFGF is both partially inhibited or stimulated, depending upon the concentration of bFGF. Radioreceptor binding experiments show that aFGF and bFGF bind to a common binding site on the PC12 cell surface. Affinity labeling studies demonstrate a single receptor with an apparent molecular weight of 145,000 daltons, which corresponds to the high molecular weight receptor identified in BHK-21 cells. NGF does not appear to compete with aFGF or bFGF for binding to the receptor. Heparin blocked the binding of bFGF to the receptor but had only a small inhibitory effect on the binding of aFGF to the receptor. Thus, it appears that heparin inhibition of the neurotropic effects of bFGF occurs, at least in part, by impairing the interaction of bFGF with the receptor, while having little effect on that of aFGF. The stimulatory effects of heparin on the neurotropic activity of aFGF, bFGF, and NGF may occur through a site not associated with the respective cellular receptor for the growth factors.  相似文献   

5.
Acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) are present in high levels in most areas of the embryonic rodent brain. To begin to understand the role of these growth factors in brain development, the effects of aFGF and bFGF on dissociated cell cultures prepared from embryonic and neonatal rat brain were studied. Addition of aFGF and heparin or bFGF alone to serum-free cultures of the dissociated Embryonic Day (E) 14.5 mesencephalon stimulates cell proliferation, as judged by [3H]thymidine autoradiography, leading to a maximal 75-fold increase in the total number of cells. This effect is dose-dependent with half-maximal increases at concentrations of about 5-6 ng/ml of aFGF or bFGF and is inhibited by the FGF antagonist HBGF-1U. The effect of aFGF on cell proliferation in cultures prepared from E14.5 mesencephalon is similar to that in cultures prepared from E14.5 cortex. However, in cultures prepared from E14.5 rhombencephalon or diencephalon, the proliferative effect of aFGF is much reduced. In all brain areas studied, the proliferative effect of aFGF declines with increasing age. Immunocytochemical analysis of E14.5 mesencephalic cultures demonstrated that the aFGF-induced increase in cell number is due to the proliferation of A2B5-immunoreactive (IR) glial precursor cells, but not of neuronal precursors, fibroblasts, or microglial cells. Moreover, differentiated glial fibrillary acidic protein-IR astrocytes and 2',3'-cyclic nucleotide 3'-phosphohydrolase-IR oligodendrocytes were not observed in cultures continuously treated with aFGF or bFGF, but were observed in high numbers after removal of the growth factors. These results suggest (1) that aFGF and bFGF are potent mitogens for glial precursor cells in all embryonic brain regions, (2) that the magnitude of the effects of aFGF depends on embryonic age and brain region, and (3) that both growth factors inhibit the differentiation of astrocyte or oligodendrocyte precursors. These observations made in vitro strongly support the hypothesis that FGF plays a critical role in gliogenesis and the timing of glial differentiation in the brain.  相似文献   

6.
Bovine aortic endothelial cells (BAEC) can be isolated in large numbers without major contamination by other cells and maintained in culture with a limited life span for about 100 population doublings. In order to study phenotypic changes of BAEC during long-term culture, stocks of different passages of BAEC were established and their morphological, migratory, and proliferative properties analyzed. Early-passage BAEC (passages 5–15) rapidly produce dense, cobblestone-like monolayers. Their growth beyond the monolayer configuration is characterized by the formation of an irregular network of spindle-shaped, crisscrossing BAEC growing either on top or beneath the monolayer, and by the assembly of elongated BAEC into well-differentiated capillary-like tubes. In contrast, senescent BAEC (passages 35–45) form perfect cobblestone monolayers that contain several, often multinucleated giant cells and a few capillary-like tubes but not the crisscrossing networks of their early-passage counterparts. The rates of BAEC migration and proliferation gradually decline during in vitro senescence. This decline is neutralized by exogenous basic fibroblast growth factor (bFGF) which elevates the migratory and proliferative capacities of early-passage and senescent BAEC to uniformly high levels. Northern blot analysis shows a gradual decline in bFGF message and an increase in laminin message during in vitro BAEC senescence. The present study supports the concept of autocrine growth regulation of BAEC and associates a decreased bFGF message with decreased rates of migration and proliferation as well as loss of the crisscrossing BAEC morphotype in senescent cultures. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The effects of heparin and other glycosaminoglycans (GAGs) on the mitogenicity and stability of acidic fibroblast growth factor (aFGF) were studied. The mitogenic activity of aFGF was assayed utilizing cultured adult human endothelial cells (AHECs) isolated from iliac arteries and veins as target cells. In most experiments, aFGF purified from bovine brain was employed; in some experiments recombinant bovine aFGF was used and qualitatively similar results were obtained. In the presence of heparin, bovine aFGF at doses between 0.5 and 1.0 ng/ml (30-60 pM) elicited half the maximum AHEC growth over a 4-day period depending on the cell line tested; in the absence of heparin, significant growth was not observed at aFGF concentrations less than 10-20 ng/ml. This effect of heparin was dose-dependent over the range 0.1-10 micrograms/ml (half-maximum dose, 2 micrograms/ml). The mitogenic activity of bovine aFGF for AHECs decreased by 50% after preincubation in culture medium without cells at 37 degrees C for 2 1/2 to 3 hours. In contrast, the mitogenic activity of bovine aFGF preincubated in the presence of heparin-containing culture medium without cells was dramatically stabilized (half-life 24-29 hours). These effects also were observed in serum-free medium. Several GAGs structurally related to heparin such as chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, and hyaluronic acid neither potentiated nor stabilized aFGF mitogenic activity. However, heparan sulfate from bovine lung was found to be nearly as active as heparin in both these effects. These data suggest that the binding and stabilization of mitogens by extracellular and tissue-associated heparan sulfates might play important roles in the regulation of AHEC growth.  相似文献   

8.
Using monolayer cultures of clonally isolated C3 and T5 rat prostate cancer cells, we determined that acidic (aFGF) and basic (bFGF) fibroblast growth factors profoundly enhanced T5 cell thymidine incorporation with half-maximum stimulation at 0.53 and 0.35 ng/ml, respectively. In contrast, aFGF or bFGF enhancement of C3 cell thymidine incorporation was about 5% of that of T5 cells, and effects were principally mitogen concentration independent. Saturation analyses and cross-linking studies established that both C3 and T5 cells contained high-affinity FGF receptors of 120 and 145 kilodaltons and that receptor content and Kd of C3 and T5 cells were comparable. aFGF or bFGF stimulation of T5 cell thymidine incorporation profoundly decreased as cell plating density was reduced from 1.5 x 10(5) to 1.0 x 10(4) cells/well. The modest response of C3 cells to either aFGF or bFGF also decreased as cell plating density was reduced. Because heparin preserves FGF biological activity and enhances bFGF binding to high-affinity FGF receptors, we examined the effect of heparin on FGF stimulation of C3 cell thymidine incorporation. We found that changes in cell plating density and/or medium heparin concentration had variable, inconsistent effects. These were C3 cell plating density associated and included inhibition or modest enhancement of FGF effects. Binding analyses established that high-affinity bFGF binding of C3 and T5 cells immediately prior to assessing FGF-stimulated thymidine incorporation was comparable and independent of cell plating density, implying that C3 cell FGF insensitivity was not attributable to differences in C3 and T5 cell FGF receptor content at the time of mitogen stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The activity of acidic and basic fibroblast growth factor-like mitogens (aFGF, bFGF) extracted from cultured bovine aortic endothelial (BAEC) and rat aortic smooth muscle cells (SMC) was compared with that of freshly isolated cells from the same tissues. Extracts of subendothelial extracellular matrix (ECM) and cell lysates of cultured BAEC contained 4-fold more bFGF-like activity than the extracts of fresh cells. ECM and cell lysates of SMC yielded 10-fold more bFGF-like activity than the fresh cell lysates. We consistently find aFGF-like activity in both cell types. In the case of BAEC, cultured cells and ECM contained 3-fold more aFGF-like activity when compared with freshly isolated cells, whereas in cultured SMC, aFGF-like activity in cell and ECM extracts was 8-fold higher than in fresh cell extracts. The mitogens extracted from cell lysates and from the ECM are closely related to aFGF or bFGF by the criteria that they bind to heparin-sepharose and elute at 1.1 M (aFGF) or 1.5 M (bFGF) NaCl, have molecular weights of about 18,000, and react with anti-aFGF (1.1 M), or anti-bFGF (1.5 M) antibodies when analyzed by Western blots and by radioimmunoassay specific for aFGF and bFGF. This mitogenic activity is inhibited by neutralizing antibodies to aFGF and bFGF. In addition, the column fractions are potent mitogens for Balb/c 3T3 fibroblasts. Acidic and basic FGF-like mitogenic activity could also be extracted from the cell nuclei. The subcellular localization of both FGFs was visualized in both nuclei and cytoplasm with immunoperoxidase. Compared with primary SMC, secondary SMC had an increased capacity to bind 125IaFGF to high affinity receptors, while binding to freshly isolated BAEC and SMC was negligible. We conclude that FGFs are present at low levels in freshly isolated cells and that propagation in cell culture provides a stimulus for production of these mitogens.  相似文献   

10.
Staphylococcus aureus, which mediated binding to heparan sulfate, and also strains of coagulase-negative staphylococci (CNS) adhered in high numbers to polymers with end-point attached heparin. A characteristic feature of several cell growth factors is strong affinity for heparin. In the present study, binding of the 125I-labeled heparin-binding growth factors (HBGF), acidic and basic fibroblast growth factor (aFGF, bFGF), and platelet-derived growth factor (PDGF) by S. aureus and CNS strains was examined. Staphylococcal strains used in this study bind bFGF and PDGF, but not aFGF. The binding of bFGF and PDGF was time dependent, influenced by pH and ionic strength for S. aureus Cowan 1. Preincubation of staphylococcal cells with unlabeled bFGF enhanced bFGF binding, but heparin, protamine sulfate, poly-L-lysine, and suramin were potent inhibitors of 125I-bFGF binding to cells of S. aureus Cowan 1. Glycosaminoglycans of comparable size (chondroitin sulfate), other polysulfated polymers (λ-carrageenan, fucoidan), and some polysulfated polysaccharides (dextran sulfate, pentosan polysulfate) inhibited binding of both GFs to various extents. The partial inhibition of binding of both GFs after protease and periodate treatments indicates that both proteinaceous and other carbohydrate moieties participate in the binding. A lysozyme cell surface extract and bacterial lysates of S. aureus Cowan 1 competitively inhibited binding of 125I-bFGF and 125I-PDGF. These results suggest that staphylococci have the ability to bind two of the HBGFs, bFGF and PDGF, but not aFGF, via more than one cell structure. These binding structures seem to be exposed on the cell surface and deeply anchored in the cytoplasmic membrane as well.  相似文献   

11.
We have analyzed the effect of basic fibroblast growth factor (bFGF) on junctional communication (coupling) and connexin 43 (Cx43) expression in bovine microvascular endothelial (BME) cells. In control confluent cultures, the incidence of coupling, as assessed by the intercellular transfer of microinjected Lucifer Yellow, was limited to 13% of injected cells, and decreased to 0% with time in culture. After exposure to bFGF (3ng/ml), the incidence of coupling was increased in a time-dependent manner, reaching a maximum of 38% of microinjected cells after 10-12 hours. The extent of coupling, as assessed by scrape loading, was maximally increased 2.1-fold 8-9 hours after addition of bFGF. bFGF also induced a 2-fold increase in Cx43 as assessed by Western blotting, and increased Cx43 immunolabelling at contacting interfaces of adjacent BME cells. Cx43 mRNA was likewise increased after exposure to bFGF in a time- and dose-dependent manner, with a maximal 6-7-fold increase after a 4 hour exposure to 3-10ng/ml. Finally, the increase in coupling and Cx43 mRNA expression observed after mechanically wounding a confluent monolayer of BME cells was markedly reduced by antibodies to bFGF, which have previously been shown to inhibit migration. Taken together, these results indicate that exogenous and endogenous bFGF increase intercellular communication and Cx43 expression in microvascular endothelial cells. We propose that the bFGF-mediated increase in coupling is necessary for the coordination of endothelial cells during angiogenesis and other vessel wall functions.  相似文献   

12.
Components of the extracellular matrix have been shown to modulate the interaction of endothelial cells with their microenvironment. Here we report that thrombospondin (TSP), an extracellular matrix component, induces adhesion and spreading of murine lung capillary (LE-II) and bovine aortic (BAEC) endothelial cells. This TSP-induced spreading was inhibited by heparin and fucoidan, known to bind the amino-terminal globular domain of the molecule. In addition, endothelial cells were induced to migrate by a gradient of soluble TSP (chemotaxis). The chemotactic response was inhibited by heparin and fucoidan, as well as by the mAb A2.5, which also binds to the amino-terminal domain. These data are in agreement with our previous observation that the TSP aminoterminal heparin binding region is responsible for the induction of tumor cell spreading and chemotactic motility. The inhibition of chemotaxis and spreading by antibodies against the beta 3 but not the beta 1 chain of the integrin receptor points to a role for the integrins in the interaction of endothelial cells with TSP. We also found that TSP modulates endothelial cell growth. When added to quiescent LE-II cells, it inhibited the mitogenic effects of serum and the angiogenic factor bFGF, in a dose-dependent manner. The inhibition of DNA synthesis detected in the mitogenic assay resulted in a true inhibition of BAEC and LE-II cell growth, as assessed by proliferation assay. This work indicates that TSP affects endothelial cell adhesion, spreading, motility and growth. TSP, therefore, has the potential to modulate the angiogenic process.  相似文献   

13.
Prostaglandin production by cultured human endothelial cells varies with growth conditions. We observed a marked diminution in both spontaneous and inducible production of prostacyclin (PGI2) by human umbilical vein and saphenous vein endothelial cells when they were cultured in the presence of the heparin-binding growth factor, acidic fibroblast growth factor (aFGF) and heparin, compared with PGI2 production during culture in medium lacking these factors. Decreased PGI2 production was related to duration of exposure of the cells to aFGF and heparin and depended on the concentration of both substances. Heparin (1-100 micrograms/ml) strongly potentiated the effects of aFGF but had a limited and variable effect alone. The decrease in PGI2 production correlated with a reduction in the cellular content of immunoreactive prostaglandin H synthase and prostacyclin synthase. Arachidonate deacylation was not decreased. In addition, the eicosanoid profile of endothelial cells was changed by exposure to aFGF and heparin. These studies indicate that heparin acts as a modulator of prostaglandin synthesis in endothelial cells through its interaction with aFGF, mediated by alterations in two key enzymes in the arachidonate metabolic pathway.  相似文献   

14.
The bioactivity of both bFGF and aFGF in the BALB/MK-1 cell line has been compared to that of EGF. Our results indicate that, for that cell type, aFGF was far more potent than bFGF in inducing cell proliferation. In the presence of heparin, aFGF was as potent as EGF. In addition, excess bFGF has an inhibitory effect on the proliferation of MK cells exposed to a saturating concentration of aFGF, therefore acting as a partial agonist of aFGF. Surprisingly, bFGF, although it had low biological activity, was capable of synergizing the effect of EGF. In its presence, cultures exposed to saturating concentration of EGF have a final cell density 3- to 4-fold higher than that of counterpart cultures exposed to EGF alone. TGF beta, which in previous studies has been shown to inhibit the growth of keratinocytes, also inhibited the growth of BALB/MK-1 cells in response to either bFGF or aFGF. These studies suggest a role for FGF in regulating BALB/MK proliferation. aFGF provides positive growth signals which can be negatively modulated by excess bFGF or TGF beta, while bFGF, although a poor mitogen, could act by potentiating the effect of subsaturating concentrations of EGF.  相似文献   

15.
Acidic and basic fibroblast growth factors (aFGF and bFGF) belong to a family of structurally related polypeptides characterized by a high affinity for heparin. a and bFGF display mitogenic activity for many cell types. Biological activity is strongly potentiated by heparin which stabilizes their molecular conformation by preventing physicochemical or enzymatic degradation. In our previous study we have shown that a water-soluble derivatized dextran named DDE, containing 82.2% methyl carboxylic acid groups, 6.1% benzylamide, and 5.6% sulfonate with a specific anticoagulant activity equivalent to heparin of 0.5 IU/mg could potentiate the mitogenic activity of aFGF on CCL39 cells. Optimal concentrations for maximal potentiation of 400 micrograms/ml and 20 micrograms/ml were obtained respectively for DDE and heparin. In the present report, we have uncovered the fact that several carboxymethyl benzylamide sulfonate dextrans differing in degree and positioning of the substituent groups can mimic heparin in regard to the protection, stabilization, and potentiating effects with aFGF or bFGF. Our data establishes that the dextran derivatives studied can act as potentiating agents for FGFs. Native dextran (DDA) had no effect. Dextran derivatives can also protect aFGF and bFGF from heat as well as from pH denaturation, and against trypsic and chymotrypsic degradation. The dextran derivative DDI (82% methylcarboxylic acid, 23% benzylamide, 13% sulfonate) was studied in greater detail and exhibited a greater protection for bFGF and a lesser protecting effect for aFGF than heparin. Derivatized dextrans which have very weak anticoagulant activity are of great interest as alternatives to heparin for use as stabilizers, potentiators, protectants, and slow-release matrices for FGFs in pharmaceutical formulations.  相似文献   

16.
Although the basic fibroblast growth factor (bFGF) gene lacks a traditional consensus signal peptide domain indicative for secretion, many cell types have receptors for bFGF. Since endothelium is a rich source of cell-associated bFGF, we asked under what conditions could bFGF be released or secreted from confluent cultures of bovine aortic endothelial (BAE) cells. The level of bFGF in BAE cell lysates was compared with the level of heparin-releasable bFGF in intact BAE cell monolayers, intact cells with exposed extracellular matrix (nonlytic matrices), and extracellular matrices prepared by cell lysis (lytic matrices). Less than 10% of total cell-associated bFGF was released from intact cell monolayers and nonlytic matrices. In contrast, the levels of bFGF released from lytic matrices depended upon the conditions used to prepare the matrices. Cell lysis at neutral pH generated matrices that released the highest bFGF levels (approximately 50% of total cell-associated bFGF). These matrices were heavily contaminated by histones, indicating the cellular release and adsorption of intracellular proteins to the matrix. Matrices prepared by BAE cell exposure to basic pH (100 mM NH4OH) contained low bFGF content and minor histone contamination. These latter matrices were chosen to study bFGF sequestration, under physiological conditions, into the extracellular matrix of confluent BAE cell cultures. Incubation with endotoxin, an agent acutely toxic to BAE cells, resulted in cellular release and adsorption of endogenous bFGF to cells and matrices, accompanied by histone deposition in the matrices. These results suggested that one mechanism for bFGF release from BAE cell monolayers was passive release induced by severe cell injury and/or cell lysis with secondary adsorption to the matrix.  相似文献   

17.
We report functional differences in constitutive and agonist-mediated endothelial barrier function between cultured primary and Clonetics human umbilical vein endothelial cells (pHUVEC and cHUVEC) grown in soluble growth factors and heparin. Basal transendothelial resistance (TER) was much lower in pHUVEC than in cHUVEC grown in medium supplemented with growth factors, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and human epithelial growth factor (EGF), and heparin. On the basis of a numerical model of TER, the increased basal TER in cHUVEC was due to effects on cell-matrix adhesion and membrane capacitance. Heparin and bFGF increased constitutive TER in cultured pHUVEC, and heparin mediated additional increases in constitutive TER in pHUVEC supplemented with bFGF. EGF attenuated bFGF-mediated increases in TER. On the basis of the numerical model, in contrast to cHUVEC, heparin and bFGF augmented TER through effects on cell-cell adhesion and membrane capacitance in pHUVEC. Thrombin mediated quantitatively greater amplitude and a more sustained decline in TER in cultured cHUVEC than pHUVEC. Thrombin-mediated barrier dysfunction was attenuated in pHUVEC conditioned in EGF in the presence or absence of heparin. Thrombin-mediated barrier dysfunction was also attenuated when monolayers were exposed to low concentrations of heparin and further attenuated in the presence of bFGF. cAMP stimulation mediated differential attenuation of thrombin-mediated barrier dysfunction between pHUVEC and cHUVEC. VEGF displayed differential effects in TER in serum-free medium. Taken together, these data demonstrate marked differential regulation of constitutive and agonist-mediated endothelial barrier function in response to mitogens and heparin stimulation.  相似文献   

18.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

19.
Mature, confluent monolayer cultures of IEC-6 rat intestinal epithelial cells in conventional growth media express both Na(+)-linked, concentrative nucleoside transport (NT) activity and equilibrative, inhibitor-sensitive NT activity, but do not show morphologic differentiation. Na(+)-dependent fluxes of Ado and formycin B were minor in early subconfluent IEC-6 monolayers, but increased severalfold to become the major component of influx of these agents in confluent monolayers grown in medium containing Nu-Serum, a commercial medium supplement with a low serum content. In monolayers cultured in medium with fetal bovine serum, cell proliferation rates were similar to those in medium supplemented with Nu-Serum, but expression of Na(+)-linked NT activity was 6-8-fold lower than in monolayers grown in the latter medium. Inclusion of hydrocortisone in growth medium with Nu-Serum caused a 2-fold increase in the expression of Na(+)-linked NT activity. Experiments in which components of medium supplementation were withheld showed that insulin and epidermal growth factor were important in expression of the Na(+)-linked NT activity. Because the Na(+)-linked NT system has a brush border location in fresh intestinal epithelium, it is concluded that the regulated expression of this activity in the IEC-6 monolayers is a differentiative change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号