首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The state of conductors carrying a megampere current from the generator to the load is studied experimentally. It is found that the plasma produced from cylindrical stainless-steel tubes during the passage of a submicrosecond current pulse with a linear density of 3 MA/cm expands with a velocity of 5.5 km/s. Numerical results on the diffusion of the magnetic field induced by a current with a linear density of 1–3MA/cm into metal electrodes agree with the experimental data on the penetration time of the magnetic field. For a linear current density of 3.1 MA/cm, the experimentally determined electric field strength on the inner surface of the tube is 4 kV/cm. The calculated electric field strength on the inner surface of the tube turns out to be two times higher, which can be explained by plasma production on the outer and inner surfaces of the electrode.  相似文献   

2.
Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses.  相似文献   

3.
Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.  相似文献   

4.
A numerical model of a spark discharge propagating along the ground surface from the point at which an ∼100-kA current pulse is input into the ground has been developed based on experiments in which the velocity of a long leader was measured as a function of the leader current. The results of numerical simulations are in good agreement with the measured characteristics of creeping discharges excited in field experiments by using a high-power explosive magnetic generator. The reason why the length of a spark discharge depends weakly on the number of simultaneously developing channels is found. Analysis of the influence of the temporal characteristics of the current pulse on the parameters of the creeping spark discharge shows that actual lighting may exhibit similar behavior.  相似文献   

5.
Adaptation to training loads can be quantitatively described by a dose-effect dependence, with the gain in the training function over a certain period regarded as the effect and the dose expressed as a product of the energy spent during exercise and the stimulus duration. The duration combines the periods of exercises, pauses, and recovery needed to compensate for the fast fraction of the oxygen debt. In addition to direct measurements of the energy spent, quantitative assessment of the load intensity can be based on the total pulse cost of exercise, which accurately reflects the changes in the oxygen demand and the energy cost of the physical load. To quantitate and standardize training and competition loads, we suggest the use of correlations found between the pulse and energy costs of exercises and their relative power determined in critical modes of muscle activity: at the anaerobic threshold; the critical power, associated with the maximum oxygen consumption; the alactic anaerobic threshold; the power of exhaustion, when blood lactic acid reaches its maximum; or at maximum aerobic power, when the muscle reserves of ATP and creatine phosphate are the most depleted.  相似文献   

6.
Results are presented from experiments on studying the compactness of compression of imploding nested foam-wire loads at currents of up to 4 MA at the Angara-5-1 facility. The degree of pinch compression was estimated from the dynamics of the spatial distribution of the current (magnetic field) and the shape of the soft X-ray pulse. The load consisted of nested cascades, one of which being a wire array and the other being a hollow or solid low-density cylinder made of agar-agar foam with a wall thickness of 100?C200 ??m. In some experiments, one of the cascades was made of C20H17O6 solid-state organic acid foam. The radial distribution of the magnetic field inside the nested cascades of the imploding foam-wire load (both between the cascades and inside the inner cascade) was measured using tiny magnetic probes. The measured radial distributions of the magnetic field are compared with the magnetic field configuration calculated using a one-dimensional MHD code simulating the implosion of a nested foam-wire load. It is shown that the spatial structure of the current and magnetic field during the implosion of such a load is determined by the development of supersonic and subsonic magnetized plasma flows in its cascades. The specific features of pinch formation and methods for the compensation of the nonsimultaneous pinch compression between the anode and the cathode (the zipper effect) during the implosion of a nested foam-wire load are analyzed.  相似文献   

7.
Results are presented from measurements of the azimuthal magnetic field generated during the implosion of double (nested) tungsten wire arrays in the Angara-5-1 facility at currents of ~3 MA. It is found that the inner array affects the current distribution in the interarray space and that there is an optimal mass (an optimal number of wires) of the inner array at which the full width at half-maximum of the soft X-ray pulse (in the photon energy range of >100 eV) is minimal. On the average, double wire arrays provide a better reproductibility, higher power, and shorter duration of the soft X-ray pulse in comparison to single arrays.  相似文献   

8.
An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5–6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4–6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.  相似文献   

9.
In epidemiological studies of electromagnetic fields and health effects, exposure classification is crucial. There is no generally accepted biophysical interaction mechanism, but many studies are based on the hypothesis of a causal relationship with the strength of magnetic field. Some definition of the magnitude of exposure must be used, e.g., mean magnetic flux density, the integral of magnetic flux and time, or a peak value. Magnetic fields around a particular power line depend on the current load. The aim of the present study was to follow variations in line current load in the power supply system of the largest Norwegian city on a yearly, monthly, daily, and diurnal basis. Fairly large variations in load were found, but increases in consumption were not necessarily reflected in current load on high voltage lines. The correlation between outdoor temperature and current load varied widely, depending on the type of power station feeding the line in question. The registered time variations are large enough to interfere with epidemiological classification of residences and testing of epidemiological hypotheses. © 1996 Wiley-Liss, Inc.  相似文献   

10.
A technique for calculating a plasma opening switch in an external magnetic field and its matching to a load the impedance of which increases with time was verified experimentally. The experiments were performed in the RS-20 facility both in the absence of a load and with various inductive loads. The amplitude of the voltage pulse at the input of the plasma opening switch was 0.36–0.84 MV, the current amplitude was 280–320 kA, and the pulse duration was ~2 μs, whereas the corresponding parameters of the output pulse were 0.8–3.2 MV, 0–240 kA, and ~100 ns.  相似文献   

11.
The aim of this work was to study the exposure to magnetic fields of children living at different distances from a power line and to evaluate how well theoretical calculations compared with actual exposure. Personal exposure instruments were carried for 24 h by 65 schoolchildren living 28–325 m from a 300 kV transmission line; the current load was 200–700 A. About half of the children attended a school far from the power line, whereas the other half attended a school located about 25 m from the line. Exposure to magnetic fields was analyzed for three categories of location: at home, at school, and at all other places. Time spent in bed was analyzed separately. The results indicated that children who lived close to a power line had a higher magnetic field exposure than other children. The power line was the most important source of exposure when the magnetic field due to the line was greater than about 0.2 μT. Exposure at school influenced the 24 h time-weighted average results considerably in those cases where the distance between home and power line was very different from the distance between school and power line. The calculated magnetic field, based on line configuration, current load, and distance between home and power line, corresponded reasonably well with the measured field. However, the correlation depends on whether home only or 24 h exposure is used in the analysis and on which school the children attended. The calculated magnetic field seems to be a reasonably good predictor of actual exposure and could be used in epidemiological studies, at least in Norway, where the electrical system normally results in less ground current than in most other countries. Bioelectromagnetics 18:47–57, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Results are presented from the intermediate stage of work on creating a current generator in a circuit with an inductive energy storage and a semiconductor opening switch made of 40 SDL-800 diodes. A six-diode generator prototype has been created with a current pulse amplitude of ~4.5 kA and a leading edge duration of ~10–20 ns at an inductive load of 30–35 nH. The generator was used to study discharges in capillaries filled with argon or hydrogen. It is shown that, in a 2-mm-diameter capillary, the initial azimuthal asymmetry of a structure arising during the breakdown ceases as the discharge evolves, whereas in a 0.8-mm-diameter capillary, it is retained. Time-resolved spectroscopic studies of the plasma reveal the presence of line emission of highly ionized argon (ArVII and ArVIII) in the hottest phase of the discharge, which indicates that a temperature of 20–40 eV has been achieved.  相似文献   

13.
Results are presented from experimental studies of low-pressure inductive RF discharges (including those with a capacitive component) employed in plasma technology. It is shown that both the RF power absorbed in the plasma and the electron density depend nonmonotonically on the external magnetic field. Discharge disruptions occurring at critical values of the magnetic field and the spatial redistribution and hysteresis of the plasma parameters were observed when varying the magnetic field and RF generator power. The parameters of the plasma of low-pressure (0.5–5 mTorr) inductive RF discharges were investigated, and the discharge properties related to the redistribution of the RF generator power between the plasma and the discharge external circuit were revealed. The experiments were performed with both conventional unmagnetized inductive plasma sources and plasma sources with a magnetic field.  相似文献   

14.
The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc’s rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film’s vibration during the disc’s rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62°C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.  相似文献   

15.
The excitation of quasistatic magnetic fields by a circularly polarized laser pulse in a plasma channel is considered. It is shown that, to second order in the amplitude of the electric field of the laser pulse, circular rotation of the plane of polarization of the laser radiation in a radially nonuniform plasma gives rise to a nonlinear azimuthal current and leads to the excitation of the radial and axial components of the magnetic field. The dependence of the magnetic field distribution over the plasma channel on the spatial dimensions of the pulse and on the channel width is investigated for a moderate-power laser pulse. The structure of the magnetic fields excited by a relativistic laser pulse in a wide plasma channel is analyzed.  相似文献   

16.
The influence of asynchronous actuation of the Angara-5-1 facility modules on the implosion symmetry of the wire array plasma in the Z-pinch mode is studied. It is shown that an increase in the r.m.s. jitter in the start times of the modules leads to an appreciable azimuthal asymmetry of magnetic field penetration inside the wire array and, as a consequence, to an increase in the duration of the soft X-ray pulse, a decrease in its power, and a shift of the Z-pinch with respect to the array axis. Necessary conditions for axisymmetric pinch implosion are determined. Experimental data on the magnitude and azimuthal distribution of the current (magnetic field) inside the wire array were obtained from magnetic probe measurements. The position of the Z-pinch with respect to the wire array axis was determined from two-dimensional X-ray images and radial optical streak images.  相似文献   

17.
A study is made of the propagation of an Alfvén pulse and the superposition of an Alfvén and a magnetosonic pulse in the vicinity of the magnetic null line (the X point). It is shown that, on long time scales, the poloidal components of the velocity and magnetic field relax to steady-state distributions similar to those in the case of a magnetosonic pulse. In the essentially nonlinear problem under investigation, the steady-state distributions of the toroidal components of the velocity and magnetic field are found to be close to those in the corresponding linear problem. It is established that two-dimensional effects play an important role in the evolution of the forming current sheets.  相似文献   

18.
A method for simultaneous magnetic field application and intracellular recording is presented. A little used method for magnetic field application was exploited; the field generator consisted of a flat copper sheet through which current was passed to generate a magnetic field. The resultant magnetic field was relatively homogeneous, exhibiting a variation of +/- 5%. This compact, current-sheet field generator was mounted on the condensor of a microscope. The current induced in the intracellular electrode was reduced by injecting current equal and opposite to the induced current into the microelectrode. This step reduces the possibility of cellular effects and voltage artifacts due to the induced electrode current. The technique was used to conduct preliminary studies on the effects of extremely low frequency (ELF) linearly and circularly polarized magnetic fields (1.0 Gauss, 60 and 70 Hz) on miniature end plate potential (mepp) frequency (frequency of neurotransmitter release events) of rat flexor digitorum brevis muscle. The same synapse was utilized for both the sham-exposed control and the exposed experimental halves of an experiment. After 10 min of exposure to a 60-Hz linear field, mepp frequency was significantly increased by 12%, but exposure to a 60-Hz circular field did not significantly alter mepp frequency. Exposure to a 70-Hz linear field did not significantly change mepp frequency, but application of a 70-Hz circular field appears to decrease mepp frequency by 4%. These results indicate that both types of magnetic fields can alter mepp frequency, depending upon the frequency and configuration of the field.  相似文献   

19.
In a specific case, the magnetic field generated in a building by a nearby power line is usually easy to calculate, although the accuracy of these calculations is sensitive to the quality of source information. To be able to study public health dimensions of magnetic field exposure (e.g., risk of cancer), it is necessary to evaluate the size and exposure of the population at risk. Relatively little quantitative information on public exposure to power-frequency magnetic fields of high-voltage power lines is available. This report describes residential exposure to magnetic fields from 110 kV, 220 kV, and 400 kV power lines in Finland at the national level, including 90% of the total line length in 1989. A geographical information system (GIS) was used to identify the buildings located near the power lines. After determining the distances between the lines and the buildings, historical data on load currents of these lines were used to calculate the magnetic fields. The residential magnetic field histories were then linked to the residents by means of a computerized central population register. The data obtained on personal exposure have also been utilized in a nationwide epidemiological study on magnetic field exposure of power lines and risk of cancer. The methods of exposure assessment and results of the number of buildings near 110 kV, 220 kV, and 400 kV power lines, their average annual magnetic fields, and personal exposure to magnetic fields from these lines are described. We found that 15,600 residents lived in an average residential magnetic field ≥0.1 μT caused by power lines in 1989. The number of these residents increased fivefold during 1970-1989. We estimated that 0.3% of the population was exposed in their residences to an annual average magnetic flux density from 110 kV, 220 kV, and 400 kV power lines higher than 0.1 μT, the level that the background magnetic flux density in general does not exceed in Finnish homes. Thus, the problem of magnetic field exposure generated by high-voltage lines concerns only a relatively small fraction of the total population in Finland. However, the size and exposure of the population at risk remain somewhat arbitrary in practical multisource situations, as the biological interaction mechanism, the concept of harmful dose, and, in particular, the significance of the duration of exposure are unknown. © 1995 Wiley-Liss, Inc.  相似文献   

20.
李俊  方志财  齐鲁  胡立江 《生物磁学》2013,(26):5055-5058,5049
基于对生物磁学效应的研究,磁疗成为替代医学和补充医学的一种有效的治疗方法,本文通过对现有静磁场(恒定磁场)保健寝具磁标准和磁剂量的评述,首次提出磁保健寝具三围空间磁场的概念,指出采用磁感应强度在空间的强度分布作为磁保健剂量标准。论述了三围空间磁场具体磁参数的评价,包括所用磁源的表面磁感应强度,寝具织物表面磁场的穿透力、梯度、有效磁通量和空间能量等磁场分布的描述性指标。指出了静磁场保健寝具磁参数的合理的评价参量:为确保织物表面磁感应强度在目前认知的400~1100Gs有效安全剂量内,依据使用时的织物厚度,磁保健寝具选用的磁体表磁应在1000-3000Gs左右.且磁场的梯度不宜过大,磁场的平均穿透力在25-30cm左右,以确保空间磁场能量的有效作用于人体深处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号