首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Moloney murine leukemia virus, the encapsidation Psi element was shown to be necessary and sufficient to promote packaging of viral RNA, and to be required for dimerization. The conformation of the Psi domain (nucleotides 215 to 565) was investigated in solution by chemical probing. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate at cytosine N3 and adenosine N1, and with a carbodiimide derivative at guanosine N1 and uridine N3. Position N7 of adenine residues was probed with diethylpyrocarbonate. The analyses were conducted on in vitro transcribed fragments corresponding either to the isolated Psi domain or to the 5'-terminal 725 nucleotides. The RNA fragments were analyzed in their monomeric and dimeric forms. A secondary structure model was derived from probing data, computer prediction and sequence analysis of related murine retroviruses. One major result is that Psi forms an independent and highly structured domain. Dimerization induces an extensive reduction of reactivity in region 278 to 309 that can be interpreted as the result of intermolecular interactions and/or intramolecular conformational rearrangements. A second region (around position 215) was shown to display discrete reactivity changes upon dimerization. These two regions represent likely elements of dimerization. More unexpectedly, reactivity changes (essentially enhancement of reactivity) were also detected in another part of Psi (around position 480) not believed to contain elements of dimerization. These reactivity changes could be interpreted as dimerization-induced allosteric transitions.  相似文献   

2.
The interaction between ribosomal protein L11 from Escherichia coli and in vitro synthesized RNA containing its binding site from 23S rRNA was characterized by identifying nucleotides that interfered with complex formation when chemically modified by diethylpyrocarbonate or hydrazine. Chemically modified RNA was incubated with L11 under conditions appropriate for specific binding of L11 and the resulting protein-RNA complex was separated from unbound RNA on Mg(2+)-containing polyacrylamide gels. The ability to isolate L11 complexes on such gels was affected by the extent of modification by either reagent. Protein-bound and free RNAs were recovered and treated with aniline to identify their content of modified bases. Exclusion of RNA containing chemically altered bases from L11-associated material occurred for 29 modified nucleotides, located throughout the region corresponding to residues 1055-1105 in 23S rRNA. Ten bases within this region did not reproducibly inhibit binding when modified. Multiple bands of RNA were consistently observed on the nondenaturing gels, suggesting that significant intermolecular RNA-RNA interactions had occurred.  相似文献   

3.
The electrophoretic mobility of RNA fragments derived from the 3'-end of 16S rRNA on slabs of polyacrylamide gel in the presence of urea is strongly influenced by dimethylation of the N6-aminogroup of two adjacent adenosines. This is not due to the presence of the methylgroups per se, but must be ascribed to an effect of methylation on long range intramolecular interactions at these denaturing conditions. When it is assumed that the electrophoretic mobilities of the RNA fragments in the polyacrylamide matrix are determined by the conformational state(s) of the fragments, dimethylation of the adenosines leads in the smaller fragments to a less compact average conformation and in the larger fragments to a more compact average conformation. An effort is made to comprehend the effects of adenosine dimethylation in terms of secondary structure based on nucleotide sequence.  相似文献   

4.
The 18S RNA fragments, A and B, and 5.8S rRNA were dissociated from 28S rRNA of cultured insect cells, NIAS-Px 58. When a mixture of fragments, A + B, was incubated with 3H-labeled 5.8S RNA under appropriate conditions, a considerable amount of radioactivity was observed with 28S rRNA. It is highly likely that the 5.8S rRNA induced a re-joining of fragment A and B to form the 28S RNA molecule.  相似文献   

5.
6.
7.
8.

The primordial RNA world is a hypothetical era prior to the appearance of protein and DNA, when RNA molecules were the sole building blocks for early forms of life on Earth. A critical concern with the RNA-world hypothesis is the instability of the cytosine nucleobase compared to the other three bases (adenine, guanine, and uracil). The author proposes that cytosine residues could have stably existed in the primordial world in the RNA i-motif, a four-stranded quadruplex structure formed by base-pairing of protonated and unprotonated cytosine residues under acidic conditions. The i-motif structure not only increases the lifetime of cytosine residues by slowing their deamination rate, but could also allow RNA polymers to bind to certain ligands (e.g., anions) to perform critical functions. Future studies focused on determining the rate of cytosine deamination in RNA i-motifs over a range of pH, temperature, and pressure conditions, and on interrogating the interactions between ligands and RNA i-motifs, could uncover new evidence of the origin of life on Earth.

  相似文献   

9.
Pathway-dependent refolding of E. coli 5S RNA.   总被引:3,自引:3,他引:0       下载免费PDF全文
The refolding of 5S RNA into its two conformational states has been examined as a function of solvent composition and annealing conditions. The results show that the product distribution depends on the folding pathway. Quick cooling from high temperature produces roughly equal amounts of the two forms, even in the presence of 1 mm Mg++. However annealing by slow cooling to intermediate temperatures (50 degrees--60 degrees C) in Mg++-containing buffers, followed by quick cooling, allows formation of a structure which guides the refolding path to the "native" conformation. The stability of this structural nucleus for the "native" conformation depends strongly on Mg++ concentration. We conclude that the A ("native") conformation differs from the B conformation not in rate of refolding, but rather in having a lower enthalpy and a also a smaller rate of unfolding for the critical structural nucleus. The order of folding during biosynthesis may be crucial for forming the "native" conformation.  相似文献   

10.
Dimethylsulfate, 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluene-sulfonate, RNase T1 and RNase V1 have been used as structure-sensitive probes to examine the higher-order structure of the 5.8 S rRNA sequence within the yeast 35 S precursor ribosomal RNA molecule. Data produced have been used to evaluate several theoretical structure models for the 5.8 S rRNA sequence within the precursor rRNA. These models are generated by minimum free energy calculations. A model is proposed that accommodates 83% of the residues experimentally shown to be in either base-paired or single-stranded structure in the correct configuration. Several alternative suboptimal secondary structures have been evaluated. Moreover, the chemical reactivities of several residues within the 5.8 S rRNA sequence in the precursor rRNA molecule differ from those of the corresponding residues in the mature rRNA molecule. This finding provides experimental evidence to support the notion that the 5.8 S rRNA sequence within the precursor rRNA undergoes structural reorganization following rRNA processing.  相似文献   

11.
12.
We have examined the accessibility to diethylpyrocarbonate of spinach chloroplast 4.5S ribosomal RNA when free and when it is part of the ribosomal structure. The modifications in free 4.5S RNA were found mostly in single-stranded regions of the secondary structure model proposed in our previous paper (Kumagai, I. et al. (1982) J.B.C. 257, 12924-28): adenines at positions 17, 19, 33, 36, 54, 55, 60, 64, 68, 72, 77, 86 and 87 were identified as the reactive residues. On the other hand, in 4.5S RNA in 70S ribosomes or 50S subunits, adenine 33 was exclusively modified, and its reactivity was much higher than in free 4.5S RNA. This highly accessible A33 of spinach 4.5S RNA is located within a characteristic seven nucleotide sequence, which is found in the 4.5S rRNAs from spinach, tobacco and a fern but deleted in 4.5S RNAs from maize and wheat.  相似文献   

13.
Precursor-specific nucleotide sequences can govern RNA folding.   总被引:9,自引:0,他引:9  
D A Stahl  T A Walker  B Meyhack  N R Pace 《Cell》1979,18(4):1133-1143
  相似文献   

14.
Higher order structure of chloroplastic 5S ribosomal RNA from spinach   总被引:4,自引:0,他引:4  
The secondary and tertiary structure of chloroplastic 5S ribosomal RNA from spinach was investigated by the use of several chemical and enzymatic structure probes. The four bases were monitored at one of their Watson-Crick base-pairing positions with dimethyl sulfate [at A(N1) and C(N3)] and with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate [at G(N1) and U(N3)]. Position N7 of purines was probed with diethyl pyrocarbonate (adenines) and with dimethyl sulfate (guanines). Ethylnitrosourea was used to probe phosphate involved in tertiary interaction or in cation coordination. In order to estimate the degree of stability of helices, the various chemical reagents were employed under "native" conditions (300 mM KCl and 20 mM magnesium at 37 degrees C), under "semidenaturing" conditions [1 mM ethylenediaminetetraacetic acid (EDTA) at 37 degrees C], and under denaturing conditions (1 mM EDTA at 90 degrees C). Unstructured regions were also tested with single-strand-specific nucleases T1, U2, and S1 and double-stranded or stacked regions with RNase V1 from cobra Naja naja oxiana venom. The results confirm the existence of the five helices and the two external loops proposed in the consensus model of 5S rRNA. However, the regions depicted as unpaired internal loops appear to be folded into a more complex conformation. A three-dimensional model derived from the present data and graphic modeling for a region encompassing helix IV, helix V, loop D, and loop E (nucleotides 70-110) is proposed. Nucleotides in the so-called loop E (73-79/100-106) display unusual features: Noncanonical base pairs (A-A and A-G) are formed, and three nucleotides (C75, U78, and U105) are bulging out. This region adopts an unwound and extended conformation that can be well suited for tertiary interactions or for protein binding. Several bases and phosphates candidate for the tertiary folding of the RNA were also identified.  相似文献   

15.
When V79 pur 1, a purine-requiring auxotroph of a Chinese hamster cell line, is deprived of adenine, nucleic acid and protein synthesis decline rapidly. However, on continuous starvation RNA and DNA synthesis recommences to reach approximately 30% of the normal level between 12 to 24 h starvation. This is accompanied by a rise in the intracellular nucleotide pool. Utilizing mengovirus, which gives a productive infection in V79 pur 1 cells even under conditions of starvation, we can show that rRNA is preferentially degraded and provides the nucleotides for RNA synthesis. Thus "purineless" death in mammalian cells is accompanied by turnover of stable RNA.  相似文献   

16.
Base substitutions have been introduced into the highly conserved sequences of loops D and E within domain 3 of Xenopus laevis oocyte 5 S rRNA. The effects of these mutations on the solution structure of this 5 S rRNA have been studied by means of probing with nucleases, and with chemical reagents under native and semi-denaturing conditions. The data obtained with these mutants support the graphic model of Xenopus oocyte 5 S rRNA proposed by Westhof et al. In particular, our results rule out the existence of long-range base-pairing interactions between loop C and either loop D or loop E. The data also confirm that loops D and E in the wild-type 5 S RNA adopt unusual secondary structures and illustrate the importance of nucleotide sequence in the formation of intrinsic local loop conformations via non-canonical base-pairs and specific base-phosphate contacts. Consistent with this conclusion is our observation that the domain 3 fragment of Xenopus oocyte 5 S rRNA adopts the same conformation as the corresponding region in the full-length 5 S rRNA.  相似文献   

17.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop of the large ribosomal RNA, thereby inhibiting protein synthesis at the elongation step. Recently, we discovered that alanine substitutions of the active center cleft residues significantly impair the depurinating and ribosome inhibitory activity of PAP. Here we employed site-directed mutagenesis combined with standard filter binding assays, equilibrium binding assays with Scatchard analyses, and surface plasmon resonance technology to elucidate the putative role of the PAP active center cleft in the binding of PAP to the alpha-sarcin/ricin stem loop of rRNA. Our findings presented herein provide experimental evidence that besides the catalytic site, the active center cleft also participates in the binding of PAP to the target tetraloop structure of rRNA. These results extend our recent modeling studies, which predicted that the residues of the active center cleft could, via electrostatic interactions, contribute to both the correct orientation and stable binding of the substrate RNA molecules in PAP active site pocket. The insights gained from this study also explain why and how the conserved charged and polar side chains located at the active center cleft of PAP and certain catalytic site residues, that do not directly participate in the catalytic deadenylation of ribosomal RNA, play a critical role in the catalytic removal of the adenine base from target rRNA substrates by affecting the binding interactions between PAP and rRNA.  相似文献   

18.
Using site-specific intercalation directed by intermolecular triplex formation, the conformation of an intercalation site in DNA was examined by footprinting with the purine-specific (A much greater than G) reagent diethylpyrocarbonate. Site specific intercalation was achieved by covalently linking an intercalator to the 5' end of a homopyrimidine oligodeoxynucleotide, which bound to a homopurinehomopyrimidine stretch in a recombinant plasmid via intermolecular triplex formation. This directs intercalation to a single site in 3kb of DNA at the 5' triplex-duplex junction. Footprinting with diethylpyrocarbonate and dimethylsulphate revealed strong protection from modification of adenine residues within the triple-helix in concordance with their Hoogsteen pairing with the third strand, and a strong hypersensitivity to diethylpyrocarbonate at the first adenine of the duplex. This result indicates that intercalation at this site induces a conformational change at the 5' triplex-duplex junction. Furthermore, the same diethlypyrocarbonate hypersensitivity was observed with an unmodified triple-strand forming oligonucleotide and a range of intercalating molecules present in solution. Thus the 5' triplex-duplex junction is a strong binding site for some intercalating molecules and the junction undergoes a conformational change which is sensitive to diethylpyrocarbonate upon insertion of the planar aromatic chromophore. This conformational change can be used to direct a single-strand cut in duplex DNA to a defined site.  相似文献   

19.
Structure of the ribosome-associated 5.8 S ribosomal RNA   总被引:3,自引:0,他引:3  
The structure of the 5.8 S ribosomal RNA in rat liver ribosomes was probed by comparing dimethyl sulfate-reactive sites in whole ribosomes, 60 S subunits, the 5.8 S-28 S rRNA complex and the free 5.8 S rRNA under conditions of salt and temperature that permit protein synthesis in vitro. Differences in reactive sites between the free and both the 28 S rRNA and 60 S subunit-associated 5.8 S rRNA show that significant conformational changes occur when the molecule interacts with its cognate 28 S rRNA and as the complex is further integrated into the ribosomal structure. These results indicate that, as previously suggested by phylogenetic comparisons of the secondary structure, only the "G + C-rich" stem may remain unaltered and a universal structure is probably present only in the whole ribosome or 60 S subunit. Further comparisons with the ribosome-associated molecule indicate that while the 5.8 S rRNA may be partly localized in the ribosomal interface, four cytidylic acid residues, C56, C100, C127 and C128, remain reactive even in whole ribosomes. In contrast, the cytidylic acid residues in the 5 S rRNA are not accessible in either the 60 S subunit or the intact ribosome. The nature of the structural rearrangements and potential sites of interaction with the 28 S rRNA and ribosomal proteins are discussed.  相似文献   

20.
The primary nucleotide sequence of Novikoff hepatoma ascites cell 5.8S rRNA (also known as 5.5 or 7S RNA) has been determined to be:
This sequence is 75% homologous with the primary nucleotide sequence of yeast 5.8S rRNA and 100% homologous with oligonucleotide marker fragments from HeLa cell RNA. In constrast, only limited homology is evident with oligonucleotides from 5.8S RNA of several flowering plants and many of the characteristic fragments differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号