首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat sensitivity of gram-negative, hydrocarbon-utilizing thermophilic bacteria was altered by a change in growth substrate. Thermophilic strains CC-6, BI-1, and LEH-1, grown with acetate or n-heptadecane as the carbon source, had a higher survival rate when incubated 5 degrees C above their maximum growth temperature than cells of the same organism after growth on glucose or glycerol. There was a correlation between the growth substrated, heat resistance, and the ratios of cellular n-hexadecanoic acid/branched hexadecanoic acid and n-heptadecanoic acid/branched heptadecanoic acid. The bacterial cells that were more heat resistant had ratios of straight-chain/branched-chain fatty acids above 1.0, whereas the heat-sensitive cells had ratios below 0.6.  相似文献   

2.
Staphylococcus aureus MF31 can grow at 46 degrees C, 2 degrees C above its normal maximum temperature of growth if 1 M NaCl is added to the medium. In the present work we show that monosodium glutamate, proline, threonine, aspartic acid, and betaine (in order of decreasing effectiveness) also enabled cells to grow at 46 degrees C. Cells grown at 46 degrees C in he presence of salt (protected or P cells) accumulated glutamate more rapidly than cells grown at 37 degrees C without salt (normal or N cells) and contained an increased amino acid pool. The principal constituents of this pool were dicarboxylic amino acids and proline. Turbidimetric evidence suggests that NaCl caused plasmolysis in S. aureus. The P cells, although grown in 1 M NaCl, had about the same Cl- and K+ content as the N cells grown without added NaCl. P cells had increased heat resistance but high concentrations of CaCl2 in the heating menstruum reduced their D55 value from a maximum of 214 min to less than 30 s. We suggest that growth at 46 degrees C in 1 M NaCl can be explained, in part at least, by the increased amino acid pool internal to the cell and the external osmotic support given by Cl- anions excluded by the cell.  相似文献   

3.
A growth factor for vascular endothelial cells was identified in the media conditioned by bovine pituitary follicular cells and purified to homogeneity by a combination of ammonium sulfate precipitation, heparin-sepharose affinity chromatography and two reversed phase HPLC steps. The growth factor was a cationic, heat stable and relatively acid stable protein and had a molecular weight, as assessed by silver-stained SDS-PAGE gel, of approximately 45,000 under non reducing conditions and approximately 23,000 under reducing conditions. The purified growth factor had a maximal mitogenic effect on adrenal cortex-derived capillary endothelial cells at the concentration of 1-1.2 ng/ml (22-26 pM). Further characterization of the bioactivity of the growth factor reveals that it exerts mitogenic effects also on vascular endothelial cells isolated from several districts but not on adrenal cortex cells, lens epithelial cells, corneal endothelial cells, keratynocytes or BHK-21 fibroblasts, indicating that its target cells specificity is unlike that of any previously characterized growth factor. Microsequencing reveals a unique N-terminal amino acid sequence. On the basis of its apparent target cell selectivity, we propose to name this factor vascular endothelial growth factor (VEGF).  相似文献   

4.
The effect of acid shock on the heat resistance of Listeria monocytogenes   总被引:5,自引:1,他引:4  
The effect of acid shock on the heat resistance of Listeria monocytogenes was investigated. After growth for 24 h at 30°C in tryptic soy broth containing 0.6% yeast extract, cell culture suspensions of L. monocytogenes were acidified with HCl or acetic acid over various time periods before being heated in whole milk to a temperature of 58°C. When cells were acid-shocked immediately with HCl for 1, 2 or 4 h, those acid-shocked for 1 h demonstrated the largest increase in thermotolerance as compared to control cells, when heated at 58°C in whole milk. In fact, cells acid-shocked for longer than 1 h with HCl demonstrated in some instances a decreased recovery as compared to control cells. Other types of acid-shock treatments included lowering the pH gradually either over a 4 h or a 24 h period. However, regardless of the type of acid-shock treatment, cells acid-shocked with HCl (but not acetic acid) prior to heating had significantly greater heat resistance as compared to control (non-acid-shocked) cells. It appears that acidification with HCl prior to final heating can enhance the heat resistance of L. monocytogenes.  相似文献   

5.
The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The concentration of the last was always below 15% (wt/wt), which is related to the hydrophilic character revealed by water contact angles of less than 30 degrees. The surfaces of L. lactis cells had a polysaccharide concentration about twice that of proteins. The S-layer of L. helveticus was either interrupted or crossed by polysaccharide-rich compounds; the concentration of the latter was higher in the stationary growth phase than in the exponential growth phase. Further progress was made in the interpretation of XPS data in terms of chemical functions by showing that the oxygen component at 531.2 eV contains a contribution of phosphate in addition to the main contribution of the peptide link. The isoelectric points were around 2 and 3, and the electrophoretic mobilities above pH 5 (ionic strength, 1 mM) were about -3.0 x 10(-8) and -0.6 x 10(-8) m(2) s(-1) V(-1) for L. lactis and L. helveticus, respectively. The electrokinetic properties of the latter reveal the influence of carboxyl groups, while the difference between the two strains is related to a difference between N/P surface concentration ratios, reflecting the relative exposure of proteins and phosphate groups at the surface.  相似文献   

6.
Spiroplasma citri was cultured in three different media that supplied cholesterol and fatty acids from: (i) horse serum, (ii) pleuropneumonia-like organism (PPLO) serum fraction, or (iii) bovine serum albumin-fatty acid-cholesterol. The ability of PPLO serum fraction to support growth varied by lot number. Neither PPLO serum fraction nor the bovine serum albumin medium supported growth as well as the horse serum medium. Analysis of cholesterol, lipid phosphorus, and membrane protein showed the horse serum- and PPLO-grown cells to be indistinguishable, but the bovine serum albumin-grown cells were deficient in lipid phosphorus. The three cultures did not show markedly different fatty acid compositions, but, in all cases, the cultures preferentially incorporated palmitic acid and discriminated against linoleic acid. Cultures grown for different times from logarithmic growth through a degenerative phase showed relatively constant ratios of cholesterol/protein and lipid phosphorus/protein. Fatty acid composition was also relatively constant at the different stages. Adenosine triphosphatase and p-nitrophenyl phosphatase were mainly associated with the membrane, whereas reduced nicotinamide adenine dinucleotide oxidase was either readily removed or not associated with the membrane. The reduced nicotinamide adenine dinucleotide oxidase was inactivated at temperatures above 35 degrees C.  相似文献   

7.
Inducible thermotolerance in Lactobacillus bulgaricus   总被引:4,自引:0,他引:4  
The effect of a sublethal heat challenge on the subsequent thermotolerance of Lactobacillus bulgaricus at different stages of growth was investigated along with the effect of heating menstrum on survival.
The response of the cells to heat stress was shown to be dependent upon both cell age and heating menstrum. Heat-inducible thermotolerance could be provoked in cells which had been growing exponentially when they were subjected to the sublethal heat stress: pre-incubation at 10°C above the optimum growth temperature. The same effect could not, however, be reproduced in cells taken from the stationary phase.
Cells from the stationary phase were shown to always be more thermotolerant as compared to exponential phase cells. Cells showed a greater thermotolerance when heated in milk as compared to buffer.  相似文献   

8.
Factors affecting the heat resistance of Escherichia coli O157 : H7   总被引:3,自引:0,他引:3  
Escherichia coli O157 : H7 has been reported as being not particularly heat resistant. However, several factors which might increase its heat resistance have been investigated in this study using five strains. Increase in growth temperature to 40 °C, as found in the cow gut, heat-shock at sub-lethal temperatures of 42, 45, 48 and 50 °C, and variable heating rate (1 °C min−1 to 23 °C min−1) had no dramatic effect on heat resistance. Growth phase had a marked impact on heat resistance ; late stationary phase cells were more heat-resistant than were log phase cells. The difference in heat resistance between the two phases of growth became more pronounced when cells were resuspended in fresh nutrient broth ; heat resistance of late stationary phase cells increased dramatically whereas no such effect was observed with log phase cells. The addition of polyphosphates to the heating medium did not increase heat resistance. A reduction in water activity of the heating medium from 0·995 to levels between 0·980 and 0·960 also resulted in a marked increase in heat resistance. This effect was more pronounced under conditions of extremely low water activity created by resuspending late stationary phase cells in sunflower oil. Survivors were detected even after a heat treatment at 60 °C for 1 h or 70 °C for 5 min. It can be confirmed that this serotype has no unusual heat resistance and that the heating environment markedly affects resistance.  相似文献   

9.
Standardization of Human Diploid Cell Cultivation   总被引:3,自引:1,他引:2       下载免费PDF全文
Human embryonic diploid lung fibroblasts grown in Eagle's medium were exposed continually to a variety of environmental conditions over a large number of passages to observe how these conditions affected the growth and longevity of these cells in vitro. The cells grew well at temperatures between 34 and 37 C and some cells could be adapted to grow at 40 C. Very limited growth occurred at 30 to 31 C; however, confluent monolayers of cells could be maintained for months at 30 C and still give rise to actively growing cultures. Increasing the amino acid concentration in Eagle's medium or the calf serum concentration above 10% had no effect on the growth rate or longevity. One per cent calf serum could not support prolonged active growth. Trypsin concentrations between 1 and 0.1% and crystalline trypsin at 50 μg/ml showed no influence on cell growth. Ethylenediaminetetraacetic acid treatment and scraping, however, destroyed many of the cells, and the survivors grew poorly. The clonal morphology varied with age. Young cells frequently gave rise to densely packed clones, whereas older cells gave rise to clones with widely scattered cells. The cloning efficiency was high when the cells were young but decreased rapidly with successive passage. It was relatively constant from the 7th to 20th passage at about 15%.  相似文献   

10.
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.  相似文献   

11.
Streptococcus bovis JB1 grew nearly twice as fast (0.9 versus 1.6 h-1) and had a 40% greater growth yield (18 versus 12.5 mg of protein per mmol of glucose) when an ammonia-based medium was supplemented with amino acids, but the glucose consumption rate (88 mumol mg of protein-1 h-1) and specific rate of heat production (2.1 mW/mg of protein) were unaffected. Amino acid availability had little effect on the catabolic rate, but the specific heat decreased 40% (8.8 to 5.2 J/mg of protein). These growth rate-dependent changes in metabolic efficiency were fivefold greater than the maintenance energy. Chloramphenicol (100 mg/l), an inhibitor of protein synthesis, caused a gradual decrease in anabolic (growth) rate, but there was little change in the rate of glucose consumption and the specific heat increased. When growth was inhibited by iodoacetate, the catabolic and anabolic rates both declined and there was not increase in specific heat. On the basis of these results, the benefit of amino acid supplementation was largely explained by the balance of anabolic and catabolic rates. When amino acids were available, the anabolic and catabolic rates were more closely matched and less energy was spilled as heat.  相似文献   

12.
Two polysaccharides have been isolated from crude papain by precipitation of papain with ammonium sulfate, further precipitation of other proteins with trichloroacetic acid, and chromatography of the supernatant on DEAE-cellulose. The first polysaccharide to be eluted, designated PP-I, contained D-glucuronic acid, D-glucose, D-galactose, L-arabinose, and L-rhamnose, in the approximate molar ratios of 4:1:12:10:4. The other (PP-II), eluted at a higher salt-concentration, contained the same sugars (with about one-third less glucose and more uronic acid) in the approximate molar ratios of 13:1:40:26:12. Reduction of the uronic acid groups of PP-II produced a polysaccharide (PP-II-R) containing the same sugars in the approximate molar ratios of 2:11:37:28:12. Hydrolysis of a mixture of the two polysaccharides yielded an aldobiouronic acid, D-glucosyluronic acid-D-galactose. Neither polysaccharide preparation contained protein. These polysaccharides dramatically affected aggregation and alignment of normal human fibroblasts but had no effect on a mouse embryo fibroblast aneuploid cell-line that does not exhibit contact inhibition of growth or movement. In aggregating cells, these polysaccharides caused the cells to behave as contact-inhibited cells, that is, cell division and nuclear area were decreased.  相似文献   

13.
Aurantiochytrium sp. strain T66 was grown in batch bioreactor cultures in a defined glutamate- and glycerol-containing growth medium. Exponentially growing cells had a lipid content of 13% (w/w) of dry weight. A fattening of cells fed excess glycerol occurred in the post-exponential growth phase, after the medium was depleted of N or P. Lipid accumulation was also initiated by O(2) limitation (below 1% of saturation). N starvation per se, or in combination with O(2) limitation, gave the highest lipid content, i.e., 54% to 63% (w/w) of dry weight. The corresponding maximum culture density was 90 to 100 g/l dry biomass. The content of docosahexaenoic acid (22:6n-3) in N starved, well-oxygenated cells reached 29% (w/w) of total fatty acids but increased to 36% to 52% in O(2)-limited cells, depending on the time span of the limitation. O(2)-limited cells did not accumulate the monounsaturated fatty acids that were normally present. We inferred that the biological explanation is that O(2) limitation hindered the O(2)-dependent desaturase(s) and favored the O(2)-independent polyunsaturated fatty acid synthase. The highest overall volumetric productivity of docosahexaenoic acid observed was 93 mg/l/h. Additionally, we present a protocol for quantitative lipid extraction, involving heat and protease treatment of freeze-dried thraustochytrids.  相似文献   

14.
A growth factor was extracted from porcine bone matrix by demineralisation and purified by heat and acid treatment, hydroxyapatite chromatography and gel filtration under dissociative conditions and reverse-phase HPLC. Using the mitogenic response of osteoblast-progenitor cells from embryonic chicken, a mitogenic activity was purified 3000-fold. The mitogenic protein thus purified shows an apparent molecular mass of 13.5 kDa in both the nonreduced and reduced form on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The mitogenic activity is sensitive to proteinase K, dithiothreitol, and resistant to DNAse, RNase, heat (70 degrees C) and pH (3-10). The factor stimulates the proliferation of osteoblast-progenitor cells from embryonic chick at a concentration of 1 ng/ml. It is active on cells from skin, periosteum and sternum and has no or little activity on cells of the calvaria, intestine or kidney of embryonic chick or on mouse AKR-2B/Balb c/3T3 cell line.  相似文献   

15.
Escherichia coli strain CR341T28 will not grow at temperatures above 34 degrees C in liquid medium, and the adenylate kinase of this strain is heat sensitive. When a culture was shifted from a permissive (30 degrees C) to a nonpermissive (36 degrees C) temperature, the adenylate energy charge fell from 0.9 to 0.2, with a concurrent decrease in the number of viable cells and in the specific activity of adenylate kinase. When cultures of the temperature-sensitive strain were grown at temperatures above 30 degrees C, the adenylate energy charge, the specific activity of adenylate kinase, and the growth rate were lower than the corresponding parameters for the parental strain. By isotopic labeling of the adenine nucleotides in vivo, it was determined that increasing growth temperatures between 30 and 34 degrees C for the heat-sensitive strain resulted in a decrease in the adenosine triphosphate-to-adenosine monophosphate and adenosine triphosphate-to-adenosine diphosphate ratios. Between 26 and 30 degrees C the adenosine triphosphate-to-adenosine diphosphate ratio was essentially normal in the temperature-sensitive strain, but the adenosine triphosphate-to-adenosine diphosphate ratio was decreased. The adenylate ratios in the parental strain did not change between 30 and 34 degrees C. The adenylate kinase mass action ratio for each strain was essentially constant under all growth conditions. When assayed at 30 degrees C, the affinities of the enzyme from the mutant strain were somewhat lower than those of the parent adenylate kinase. The mutant enzyme also did not exhibit the substrate inhibition that was observed at high adenosine monophosphate concentrations with the parental enzyme. An increase in the assay temperature from 30 degrees to 40 degrees C had little or no effect on the Km values determined for the parental adenylate kinase, but caused the Km values determined for the mutant adenylate kinase to increase by a factor of two or more.  相似文献   

16.
Pseudomonas putida CA-3 is capable of converting the aromatic hydrocarbon styrene, its metabolite phenylacetic acid, and glucose into polyhydroxyalkanoate (PHA) when a limiting concentration of nitrogen (as sodium ammonium phosphate) is supplied to the growth medium. PHA accumulation occurs to a low level when the nitrogen concentration drops below 26.8 mg/liter and increases rapidly once the nitrogen is no longer detectable in the growth medium. The depletion of nitrogen and the onset of PHA accumulation coincided with a decrease in the rate of substrate utilization and biochemical activity of whole cells grown on styrene, phenylacetic acid, and glucose. However, the efficiency of carbon conversion to PHA dramatically increased once the nitrogen concentration dropped below 26.8 mg/liter in the growth medium. When supplied with 67 mg of nitrogen/liter, the carbon-to-nitrogen (C:N) ratios that result in a maximum yield of PHA (grams of PHA per gram of carbon) for styrene, phenylacetic acid, and glucose are 28:1, 21:1, and 18:1, respectively. In cells grown on styrene and phenylacetic acid, decreasing the carbon-to-nitrogen ratio below 28:1 and 21:1, respectively, by increasing the nitrogen concentration and using a fixed carbon concentration leads to lower levels of PHA per cell and lower levels of PHA per batch of cells. Increasing the carbon-to-nitrogen ratio above 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, by decreasing the nitrogen concentration and using a fixed carbon concentration increases the level of PHA per cell but results in a lower level of PHA per batch of cells. Increasing the carbon and nitrogen concentrations but maintaining the carbon-to-nitrogen ratio of 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, results in an increase in the total PHA per batch of cells. The maximum yields for PHA from styrene, phenylacetic acid, and glucose are 0.11, 0.17, and 0.22 g of PHA per g of carbon, respectively.  相似文献   

17.
Pseudomonas putida CA-3 is capable of converting the aromatic hydrocarbon styrene, its metabolite phenylacetic acid, and glucose into polyhydroxyalkanoate (PHA) when a limiting concentration of nitrogen (as sodium ammonium phosphate) is supplied to the growth medium. PHA accumulation occurs to a low level when the nitrogen concentration drops below 26.8 mg/liter and increases rapidly once the nitrogen is no longer detectable in the growth medium. The depletion of nitrogen and the onset of PHA accumulation coincided with a decrease in the rate of substrate utilization and biochemical activity of whole cells grown on styrene, phenylacetic acid, and glucose. However, the efficiency of carbon conversion to PHA dramatically increased once the nitrogen concentration dropped below 26.8 mg/liter in the growth medium. When supplied with 67 mg of nitrogen/liter, the carbon-to-nitrogen (C:N) ratios that result in a maximum yield of PHA (grams of PHA per gram of carbon) for styrene, phenylacetic acid, and glucose are 28:1, 21:1, and 18:1, respectively. In cells grown on styrene and phenylacetic acid, decreasing the carbon-to-nitrogen ratio below 28:1 and 21:1, respectively, by increasing the nitrogen concentration and using a fixed carbon concentration leads to lower levels of PHA per cell and lower levels of PHA per batch of cells. Increasing the carbon-to-nitrogen ratio above 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, by decreasing the nitrogen concentration and using a fixed carbon concentration increases the level of PHA per cell but results in a lower level of PHA per batch of cells. Increasing the carbon and nitrogen concentrations but maintaining the carbon-to-nitrogen ratio of 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, results in an increase in the total PHA per batch of cells. The maximum yields for PHA from styrene, phenylacetic acid, and glucose are 0.11, 0.17, and 0.22 g of PHA per g of carbon, respectively.  相似文献   

18.
The autocrine growth factor(s) was isolated from serumfree conditioned medium of rat sarcoma (XC) cells. Autocrine activity was enriched by ultrafiltration using Amicon YM 10 membrane, extraction with 1 M acetic acid and partially purified (650-fold) by chromatography on Bio-Gel P-100 and P-60. The final recovery of the autocrine factor(s) was 4 micrograms from 1800 ml of the conditioned medium (a yield of 6%). The factor(s) with molecular weight 6-10 kDa was heat and acid stable but inactivated by trypsin and dithiothreitol. It stimulated anchorage-dependent (but not anchorage-independent) growth of XC cells as well as untransformed, established lines of rat (NRK) and mouse (3T3) cells. The results obtained may suggest that autocrine factor(s) produced by XC cells can be one of EGF-like or/and insulin-like growth factors.  相似文献   

19.
Difference of molecular association in two types of curdlan gel   总被引:1,自引:0,他引:1  
The molecular association in a curdlan gel formed by neutralizing an alkaline solution of curdlan with carbon dioxide was compared with those in gels obtained by heating aqueous suspensions of curdlan at various temperatures.

The neutralized and 60°C-set preparations were soluble in 0·01 sodium hydroxide, whereas preparations set at above 90°C were soluble only in concentrations of sodium hydroxide above 1 . The absorption of Aniline blue or Congo red to the preparations decreased with an increase in the temperature of heat treatment and the adsorption to a gel heated at 120°C for 4 h was about 30% of that for the unheated neutralized gel. Seventy-three per cent of the heated preparation was resistant to treatment with 32% sulfuric acid at 32°C for 30 days, whereas none of the neutralized gel was resistant. An electron micrograph of the resistant part of the curdlan showed that it had a pseudocrystalline form. X-ray studies showed a much higher crystalline structure in the resistant part than in the preparation without heat treatment. The X-ray patterns were almost the same for preparations treated with 32% sulfuric acid or (1 → 3)-β-glucanase.  相似文献   


20.
1. The effect of ultraviolet (UV) radiation (280–400 nm) on fatty acid composition and elemental ratios of carbon (C), nitrogen (N) and phosphorus (P) of a unialgal culture of the chlorophyte Selenastrum capricornutum was investigated. Algae were cultured in the presence or absence of UV radiation and were subsequently fed to Daphnia magna to assess potential effects of UV on zooplankton fatty acid composition, growth and reproduction. 2. Algal growth rate was substantially reduced by UV radiation, probably because of a severe inhibition of photosynthetic efficiency (measured as optimal quantum yield). 3. Algae exposed to UV radiation had a significantly reduced content of 18 : 1 n‐9, while C18 polyunsaturated fatty acids (PUFAs) were higher under UV radiation. These observations point at an increased demand for and synthesis of PUFAs under UV stress. 4. The C : P and N : P ratios showed a remarkable decrease in UV‐exposed cells primarily owing to an increased uptake of P. The nutritional quality in terms of both fatty acid composition and stoichiometry was therefore higher in the UV treatment relative to the control. 5. Despite the UV‐induced changes in nutritional quality of S. capricornutum, no significant effects on D. magna growth or reproduction were detected. The fatty acid composition of Daphnia fed on UV irradiated algae showed a significantly lower content of 18 : 1 n‐9, but no changes in the essential PUFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号