共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sandra Da Costa Nathalie M.-P. Bourquin Jean-Fran?ois Knebel Melissa Saenz Wietske van der Zwaag Stephanie Clarke 《PloS one》2015,10(5)
Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds. 相似文献
3.
Enrico Premi Franco Cauda Roberto Gasparotti Matteo Diano Silvana Archetti Alessandro Padovani Barbara Borroni 《PloS one》2014,9(9)
Background
Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN) mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI) is a promising tool to carefully describe disease signature from the earliest disease phase.Objective
To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers) to the clinical phase of the disease (GRN- related Frontotemporal Dementia).Methods
Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers) and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo), Fractional Amplitude of Low Frequency Fluctuation (fALFF) and Degree Centrality (DC)) were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy.Results
Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC) were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found.Conclusions
GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies. 相似文献4.
Chuanfu Li Jun Yang Kyungmo Park Hongli Wu Sheng Hu Wei Zhang Junjie Bu Chunsheng Xu Bensheng Qiu Xiaochu Zhang 《PloS one》2014,9(5)
Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36). Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM) analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA) to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia. 相似文献
5.
Elseline Hoekzema Susana Carmona J. Antoni Ramos-Quiroga Vanesa Richarte Fernández Marisol Picado Rosa Bosch Juan Carlos Soliva Mariana Rovira Yolanda Vives Antonio Bulbena Adolf Tobe?a Miguel Casas Oscar Vilarroya 《PloS one》2012,7(12)
Although Attention-Deficit/Hyperactivity Disorder (ADHD) was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43) and without ADHD (n = 41), as well as a group of adult neurotypical individuals (n = 31), adult patients with a history of stimulant treatment (n = 31) and medication-naïve adults with ADHD (n = 24). We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally). Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing. 相似文献
6.
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. 相似文献
7.
Eva Chinier Sylvie N’Guyen Grégoire Lignon Aram Ter Minassian Isabelle Richard Micka?l Dinomais 《PloS one》2014,9(4)
Background
Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability.Aim
The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement.Method
Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined.Results
During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement.Conclusion
Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions. 相似文献8.
Selma Aybek Timothy R. Nicholson Owen O’Daly Fernando Zelaya Richard A. Kanaan Anthony S. David 《PloS one》2015,10(4)
Objectives
To evaluate the neural correlates of implicit processing of negative emotions in motor conversion disorder (CD) patients.Methods
An event related fMRI task was completed by 12 motor CD patients and 14 matched healthy controls using standardised stimuli of faces with fearful and sad emotional expressions in comparison to faces with neutral expressions. Temporal changes in the sensitivity to stimuli were also modelled and tested in the two groups.Results
We found increased amygdala activation to negative emotions in CD compared to healthy controls in region of interest analyses, which persisted over time consistent with previous findings using emotional paradigms. Furthermore during whole brain analyses we found significantly increased activation in CD patients in areas involved in the ‘freeze response’ to fear (periaqueductal grey matter), and areas involved in self-awareness and motor control (cingulate gyrus and supplementary motor area).Conclusions
In contrast to healthy controls, CD patients exhibited increased response amplitude to fearful stimuli over time, suggesting abnormal emotional regulation (failure of habituation / sensitization). Patients with CD also activated midbrain and frontal structures that could reflect an abnormal behavioral-motor response to negative including threatening stimuli. This suggests a mechanism linking emotions to motor dysfunction in CD. 相似文献9.
Stefano Caproni Marco Muti Massimo Principi Pierfausto Ottaviano Domenico Frondizi Giuseppe Capocchi Piero Floridi Aroldo Rossi Paolo Calabresi Nicola Tambasco 《PloS one》2013,8(6)
Motor impairment is the most relevant clinical feature in Parkinson''s disease (PD). Functional imaging studies on motor impairment in PD have revealed changes in the cortical motor circuits, with particular involvement of the fronto-striatal network. The aim of this study was to assess brain activations during the performance of three different motor exercises, characterized by progressive complexity, using a functional fMRI multiple block paradigm, in PD patients and matched control subjects. Unlike from single-task comparisons, multi-task comparisons between similar exercises allowed to analyse brain areas involved in motor complexity planning and execution. Our results showed that in the single-task comparisons the involvement of primary and secondary motor areas was observed, consistent with previous findings based on similar paradigms. Most notably, in the multi-task comparisons a greater activation of supplementary motor area and posterior parietal cortex in PD patients, compared with controls, was observed. Furthermore, PD patients, compared with controls, had a lower activation of the basal ganglia and limbic structures, presumably leading to the impairment in the higher levels of motor control, including complexity planning and execution. The findings suggest that in PD patients occur both compensatory mechanisms and loss of efficiency and provide further insight into the pathophysiological role of distinct cortical and subcortical areas in motor dysfunction. 相似文献
10.
It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. 相似文献
11.
12.
We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures - the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases). Neuronal rate vs. characteristic frequency profiles provided only a coarse representation of the calls’ frequency spectra. A comparison between the activity in the AI and those of subcortical structures showed a different transformation of the neuronal response patterns from the IC to the AI for individual calls: i) while the temporal representation of chirp remained unchanged, the representations of whistle and chutter were transformed at the thalamic level and the response to purr at the cortical level; ii) for the wideband calls (whistle, chirp) the rate representation of the call spectra was preserved in the AI and MGB at the level present in the IC, while in the case of low-frequency calls (chutter, purr), the representation was less precise in the AI and MGB than in the IC; iii) the difference in the response strength to natural and time-reversed whistle was found to be smaller in the AI than in the IC or MGB. 相似文献
13.
Goded Shahaf Danny Eytan Asaf Gal Einat Kermany Vladimir Lyakhov Christoph Zrenner Shimon Marom 《PLoS computational biology》2008,4(11)
The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen. 相似文献
14.
O.P. Skljarov 《Journal of biological physics》1999,25(2-3):223-234
The mathematical model is offered to describe an algorithm for functioning of a speech rhythm. The duration of a speech signal is divided into the numbered sequence of durations of voice and voiceless segments. All elements of this sequence will be considered as values normalized on the maximum element. We determine this sequence of the elements as a speech rhythm. 1) The model describes a speech rhythm as the recurrent relations between elements of a rhythm. 2) The model permits use of the concept of information entropy. 3) The model explains experimental findings obtained by our research group during comparative investigation of a rhythm in normal speech and stuttering. In particular, the model explains the existence of two classes of stutterers with various rhythms of speech. 相似文献
15.
Irene Neuner Wolfram Kawohl Jorge Arrubla Tracy Warbrick Konrad Hitz Christine Wyss Frank Boers N. Jon Shah 《PloS one》2014,9(10)
Introduction
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provides high spatial and temporal resolution. In this study we combined EEG and fMRI to investigate the structures involved in the processing of different sound pressure levels (SPLs).Methods
EEG data were recorded simultaneously with fMRI from 16 healthy volunteers using MR compatible devices at 3 T. Tones with different SPLs were delivered to the volunteers and the N1/P2 amplitudes were included as covariates in the fMRI data analysis in order to compare the structures activated with high and low SPLs. Analysis of variance (ANOVA) and ROI analysis were also performed. Additionally, source localisation analysis was performed on the EEG data.Results
The integration of averaged ERP parameters into the fMRI analysis showed an extended map of areas exhibiting covariation with the BOLD signal related to the auditory stimuli. The ANOVA and ROI analyses also revealed additional brain areas other than the primary auditory cortex (PAC) which were active with the auditory stimulation at different SPLs. The source localisation analyses showed additional sources apart from the PAC which were active with the high SPLs.Discussion
The PAC and the insula play an important role in the processing of different SPLs. In the fMRI analysis, additional activation was found in the anterior cingulate cortex, opercular and orbito-frontal cortices with high SPLs. A strong response of the visual cortex was also found with the high SPLs, suggesting the presence of cross-modal effects. 相似文献16.
Background
Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry.Methodology/Principal Findings
In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS) to transiently disrupt neuronal activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the ∼50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention.Conclusions/Significance
Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned. 相似文献17.
Akinwunmi Oni-Orisan Mayank Kaushal Wenjun Li Jack Leschke B. Douglas Ward Aditya Vedantam Benjamin Kalinosky Matthew D. Budde Brian D. Schmit Shi-Jiang Li Vaishnavi Muqeet Shekar N. Kurpad 《PloS one》2016,11(3)
Functional magnetic resonance imaging (fMRI) studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI) patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity). However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI) study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (>2 years post injury) and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI) based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system. 相似文献
18.
J. F. W. Deakin P. Slater M. D. C. Simpson A. C. Gilchrist W. J. Skan M. C. Royston G. P. Reynolds A. J. Cross 《Journal of neurochemistry》1989,52(6):1781-1786
Glutamatergic mechanisms have been investigated in postmortem brain samples from schizophrenics and controls. D-[3H]Aspartate binding to glutamate uptake sites was used as a marker for glutamatergic neurones, and [3H]kainate binding for a subclass of postsynaptic glutamate receptors. There were highly significant increases in the binding of both ligands to membranes from orbital frontal cortex on both the left and right sides of schizophrenic brains. The changes are unlikely to be due to antemortem neuroleptic drug treatment, because no similar changes were recorded in other areas. A predicted left-sided reduction in D-[3H]aspartate binding was refuted at 5% probability, but not at 10%. Previously reported high concentrations of dopamine in left amygdala were strongly associated with low concentrations of D-[3H]aspartate binding in left polar temporal cortex in the schizophrenics. The findings are compatible with an overabundant glutamatergic innervation of orbital frontal cortex in schizophrenia. The results also suggest that schizophrenia may involve left-sided abnormalities in the relationship between temporal glutamatergic and dopaminergic projections to amygdala. 相似文献
19.
Summary Functional magnetic resonance imaging (fMRI) data sets are large and characterized by complex dependence structures driven by highly sophisticated neurophysiology and aspects of the experimental designs. Typical analyses investigating task‐related changes in measured brain activity use a two‐stage procedure in which the first stage involves subject‐specific models and the second‐stage specifies group (or population) level parameters. Customarily, the first‐level accounts for temporal correlations between the serial scans acquired during one scanning session. Despite accounting for these correlations, fMRI studies often include multiple sessions and temporal dependencies may persist between the corresponding estimates of mean neural activity. Further, spatial correlations between brain activity measurements in different locations are often unaccounted for in statistical modeling and estimation. We propose a two‐stage, spatio‐temporal, autoregressive model that simultaneously accounts for spatial dependencies between voxels within the same anatomical region and for temporal dependencies between a subject's estimates from multiple sessions. We develop an algorithm that leverages the special structure of our covariance model, enabling relatively fast and efficient estimation. Using our proposed method, we analyze fMRI data from a study of inhibitory control in cocaine addicts. 相似文献
20.
The neural basis of self and identity has received extensive research. However, most of these existing studies have focused on situations where the internal representation of the self is consistent with the external one. The present study used fMRI methodology to examine the neural correlates of two different types of identity conflict: identity faking and concealment. Participants were presented with a sequence of names and asked to either conceal their own identity or fake another one. The results revealed that the right insular cortex and bilaterally inferior frontal gyrus were more active for identity concealment compared to the control condition, whereas identity faking elicited a significantly larger percentage signal increase than the control condition in the right superior frontal gyrus, left calcarine, and right caudate. These results suggest that different neural systems associated with both identity processing and deception were involved in identity concealment and faking. 相似文献