首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cancer cells with stem cell–like properties contribute to the development of resistance to chemotherapy and eventually to tumor relapses. The current study investigated the potential of curcumin to reduce breast cancer stem cell (BCSC) population for sensitizing breast cancer cells to mitomycin C (MMC) both in vitro and in vivo. Curcumin improved the sensitivity of paclitaxel, cisplatin, and doxorubicin in breast cancer cell lines MCF-7 and MDA-MB-231, as shown by the more than 2-fold decrease in the half-maximal inhibitory concentration of these chemotherapeutic agents. In addition, curcumin sensitized the BCSCs of MCF-7 and MDA-MB-231 to MMC by 5- and 15-fold, respectively. The BCSCs could not grow to the fifth generation in the presence of curcumin and MMC. MMC or curcumin alone only marginally reduced the BCSC population in the mammospheres; however, together, they reduced the BCSC population in CD44+CD24−/low cells by more than 75% (29.34% to 6.86%). Curcumin sensitized BCSCs through a reduction in the expression of ATP-binding cassette (ABC) transporters ABCG2 and ABCC1. We demonstrated that fumitremorgin C, a selective ABCG2 inhibitor, reduced BCSC survival to a similar degree as curcumin did. Curcumin sensitized breast cancer cells to chemotherapeutic drugs by reducing the BCSC population mainly through a reduction in the expression of ABCG2.  相似文献   

2.
The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.  相似文献   

3.
Abnormal activation of the Wnt/β-catenin signaling pathway and subsequent upregulation of β-catenin driven downstream targets—c-Myc and cyclin D1 is associated with development of breast cancer. The objective of our study was to determine if curcumin could modulate the key elements of Wnt pathway in breast cancer cells; an effect that might underscore its usefulness for chemoprevention/treatment of this malignancy. Curcumin showed a cytotoxic effect on MCF-7 cells with 50% inhibitory concentration (IC50) of 35 μM; while IC50 for MDA-MB-231 cells was 30 μM. Treatment with low cytostatic dose of 20 μM curcumin showed G2/M arrest in both breast cancer cells. The effect of curcumin (20 μM) treatment on expression of Wnt/β-catenin pathway components in breast cancer cells (MCF-7 and MDA-MB-231) was analyzed by immunofluorescence and Western blotting. Curcumin was found to effectively inhibit the expression of several Wnt/β-catenin pathway components—disheveled, β-catenin, cyclin D1 and slug in both MCF-7 and MDA-MB-231. Immunofluorescence analysis showed that curcumin markedly reduced the nuclear expression of disheveled and β-catenin proteins. Further, the protein levels of the positively regulated β-catenin targets—cyclin D1 and slug, were downregulated by curcumin treatment. The expression levels of two integral proteins of Wnt signaling, GSK3β and E-cadherin were also altered by curcumin treatment. In conclusion, our data demonstrated that the efficacy of curcumin in inhibition of cell proliferation and induction of apoptosis might occur through modulation of β-catenin pathway in human breast cancer cells.  相似文献   

4.
《Phytomedicine》2015,22(9):820-828
BackgroundBreast cancer is the leading cause of cancer-related death among women worldwide. For treating breast cancer, numerous natural products have been considered as chemotherapeutic drugs.Hypothesis/purposeThe present study aims to investigate the apoptotic effect of Saxifragifolin A (Saxi A) isolated from Androsace umbellata in two different human breast cancer cells which are ER-positive MCF-7 cells and ER-negative MDA-MB-231 cells, and examine the molecular basis for its anticancer actions.Study designThe inhibitory effects of Saxi A on cell survival were examined in MCF-7 cells and MDA-MB-231 cells in vitro.MethodsMTT assays, Annexin V/PI staining analysis, ROS production assay, Hoechst33342 staining and Western blot analysis were performed.ResultsOur results showed that MDA-MB-231 cells were more sensitive to Saxi A-induced apoptosis than MCF-7 cells. Saxi A induced apoptosis in MDA-MB-231 cells through ROS-mediated and caspase-dependent pathways, whereas treatment with Saxi A induced apoptosis in MCF-7 cells in a caspase-independent manner. In spite of Saxi A-induced activation of MAPKs in both breast cancer cell lines, only p38 MAPK and JNK mediated Saxi A-induced apoptosis. In addition, cell survival of shERα-transfected MCF-7 cells was decreased, while MDA-MB-231 cells that overexpress ERα remained viable.ConclusionSaxi A inhibits cell survival in MCF-7 cells and MDA-MB-231 cells through different regulatory pathway, and ERα status appears to be important for regulating Saxi A-induced apoptosis in breast cancer cells. Thus, Saxi A may have a potential therapeutic use for treating breast cancer.  相似文献   

5.
Recent developments in the literature have demonstrated that curcumin exhibit antioxidant properties supporting its anti-inflammatory, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Despite the valuable findings of curcumin against different cancer cells, the clinical use of curcumin in cancer treatment is limited due to its extremely low aqueous solubility and instability, which lead to poor in vivo bioavailability and limited therapeutic effects. We therefore focused in the present study to evaluate the anti-tumor potential of curcumin analogues on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC50 values of curcumin analogue J1 in these cancer cell lines were determined to be 5 ng/ml and 10 ng/ml, in MDA-MB-231 and MCF-7 cells respectively. Interestingly, at these concentrations, the J1 did not affect the viability of non-tumorigenic normal breast epithelial cells MCF-10. Furthermore, we found that J1 strongly induced growth arrest of these cancer cells by modulating the mitochondrial membrane potentials without significant effect on normal MCF-10 cells using JC-1 staining and flow cytometry analysis. Using annexin-V/PI double staining assay followed by flow cytometry analysis, we found that J1 robustly enhanced the induction of apoptosis by increasing the activity of caspases in MDA-MB-231 and MCF-7 cancer cells. In addition, treatment of breast cancer cells with J1 revealed that, in contrast to the expression of cyclin B1, this curcumin analogue vigorously decreased the expression of cyclin A, CDK2 and cyclin E and subsequently sensitized tumor cells to cell cycle arrest. Most importantly, the phosphorylation of AKT, mTOR and PKC-theta in J1-treated cancer cells was markedly decreased and hence affecting the survival of these cancer cells. Most interestingly, J1-treated cancer cells exhibited a significant inhibition in the activation of RhoA followed by reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal the therapeutic potential of the curcumin analogue J1 and the underlying mechanisms to fight breast cancer cells.  相似文献   

6.
Curcumin, an active constituent of turmeric, has been shown to possess inhibitory effect of cell proliferation and induction of apoptosis towards a board range of tumors. Cell inhibition activities of curcumin are behaved differently in various cell types. To investigate the mechanism basis for the cell inhibition of curcumin on breast cancer cell lines, we examine curcumin effect on NFκB, cell cycle regulatory proteins and matrix metalloproteinases (MMPs) in two breast cancer cell lines (MDA-MB-231 and BT-483). Cell proliferation was performed by water soluble tetrazolium WST-1 assay. The effect of curcumin's on the activity of matrix metalloproteinase-1, 3, 9 were analyzed by RT-PCR. Cell cycle regulatory protein including cyclin D1, CDK4 and p21 were examined by immunochemistry. The expressions of NFκB in breast cancer cells treated with curcumin were studied by immunochemistry and western blot. The results from WST-1 cell proliferation assay showed that curcumin exhibited the anti-proliferation effect on MDA-MB-231 and BT-483 cells in a time- and dose-dependent manner. In response to the treatment, while, the expression of cyclin D1 had declined in MDA-MB-231 and the expression of CDK4 in BT-483 had declined. MMP1 mRNA expression in BT-483 and MDA-MB-231 had significantly decreased in curcumin treatment group compared with control group. Our finding extrapolates the antitumor activity of curcumin in mediating the breast cancer cell proliferative rate and invasion by down-regulating the NFκB inducing genes.  相似文献   

7.
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner.  相似文献   

8.
Chemotherapeutic drugs proved only 50% successful in breast cancer because of cell type-dependent resistance mechanisms. FOXO3 is known to be involved in the regulation of several cell death-related genes; however, the extent of FOXO3 regulation in chemoresistance is still not fully understood. Here, we show that FOXO3 critically mediates cisplatin chemosensitivity of MCF-7 breast cancer cells which express higher levels of FOXO3 compared to resistant MDA-MB-231 cells. Administration of cisplatin induces apoptosis in MCF-7 cells in a FOXO3-dependent manner as indicated by RNA interference. On the other hand, IKK-β (IκB kinase) appears to inhibit FOXO3 action after cisplatin treatment and promotes chemoresistance in MDA-MB-231 cells. IKK-β directly interacts and sequesters FOXO3 in the cytosol preventing its nuclear localization. Moreover, cisplatin treatment induces autophagosome formation through LC-3 conversion while inhibiting the cleavage of caspase 9 and caspase 3 in MDA-MB-231 cells manipulated to overexpress FOXO3. In brief, our findings demonstrate that in addition to cellular level of active FOXO3, cisplatin chemoresistance is also regulated by IKK-β sequestration of FOXO3 in cytosol.  相似文献   

9.
Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells.  相似文献   

10.
11.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

12.
Breast cancer is the most frequently diagnosed tumor type and the primary leading cause of cancer deaths in women worldwide and multidrug resistance is the major obstacle for breast cancer treatment improvement. Emerging evidence suggests that metformin, the most widely used antidiabetic drug, resensitizes and cooperates with some anticancer drugs to exert anticancer effect. However, there are no data regarding the reversal effect of metformin on chemoresistance in breast cancer. In the present study, we investigated the resistance reversal effect of metformin on acquired multidrug-resistant breast cancer cells MCF-7/5-Fu derived from MCF-7 breast cancer cells and innate multidrug-resistant MDA-MB-231 breast cancer cells, and we found that metformin resensitized MCF7/5-FU and MDA-MB-231 to 5-fluorouracil (5-FU), adriamycin, and paclitaxel. We also observed that metformin reversed epithelial–mesenchymal transition (EMT) phenotype and decreased the invasive capacity of MCF7/5-FU and MDA-MB-231 cells. However, there were no significant changes upon metformin-treated MCF7 cells. Moreover, we found metformin treatment activated AMPK signal pathway in MCF7/5-FU and MDA-MB-231 cells and compound C, the AMPK inhibitor, could partly abolish the resensitization and EMT reversal effect of metformin. To the best of our knowledge, we are the first to report that metformin can resensitize multidrug-resistant breast cancer cells due to activating AMPK signal pathway. Our study will help elucidate the mechanism of chemoresistance and establish new strategies of chemotherapy for human breast cancer.  相似文献   

13.
Chen YJ  Kuo CD  Chen SH  Chen WJ  Huang WC  Chao KS  Liao HF 《PloS one》2012,7(5):e37006
Multi-drug resistance (MDR), an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC) transporters and activated Sonic hedgehog (Shh) signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX), we examined the effect and mechanism of norcantharidin (NCTD), a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S) and DOX-resistant (MCF-7R) cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.  相似文献   

14.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

15.
The resistance to methotrexate by a number of cancer cells such as breast cancer cell-line MDA-MB-231 due to poor permeability renders it less effective as an anticancer agent for these cells. Proline prodrug of methotrexate (Pro-MTX) was designed as a substrate of prolidase which is specific for imido bond of dipeptide containing proline and expected to penetrate MDA-MB-231 cells more efficiently. The prodrug was synthesized by solid-phase peptide synthesis method and examined as a substrate of pure prolidase as well as cell homogenate. The cytotoxicity against MDA-MB-231 and non-methotrexate resistant breast cancer cell line, MCF-7 was also examined by XTT assay. The results showed that Pro-MTX was a substrate of prolidase. It was also shown that the prodrug could be converted to parent drug methotrexate in Caco-2 and HeLa cell homogenate. When tested with Caco-2 and MCF-7 cells, Pro-MTX showed weaker cytotoxicity compared with methotrexate. But for methotrexate resistant MDA-MB-231 cells, Pro-MTX showed stronger activity than methotrexate. The results indicated that the proline prodrug of methotrexate may overcome the resistance of human breast cancer cells in culture.  相似文献   

16.
alpha(v)beta(3) integrin has a dual role in apoptosis. Whereas ligated alpha(v)beta(3) activates cell survival pathways and suppresses pro-apoptotic signals, unligated alpha(v)beta(3) or integrins bound to soluble ligands promote apoptosis. In this study, we assessed the role of alpha(v)beta(3) in chemosensitivity of breast cancer cells expressing different levels of heregulin (HRG). Expression levels of the RGD-binding integrins alpha(v)beta(3) were measured in MDA-MB-231 human breast cancer cells and its low HRG-expressing derivative (MDA-MB-231/AS31) treated with the microtubule-interfering agents (MIAs) paclitaxel and vincristine. Following treatment, only alpha(v)beta(3) levels were significantly increased in MDA-MB-231 cells. Interestingly, alpha(v)beta(3) expression was more significantly up-regulated in the MDA-MB-231/AS31 cells than in the parental cells. This MIA-induced increase of alpha(v)beta(3) expression was correlated with a decrease in cell viability and an increase in apoptosis in MDA-MB-231/AS31 cells, indicating that overexpression of alpha(v)beta(3) is linked to chemotherapy-induced cell death in low HRG-expressing breast cancer models. Moreover, a paclitaxel-induced increase of alpha(v)beta(3) was also observed in MCF-7 cells but not in an doxorubicin-resistant derivative that shows cross-resistance to paclitaxel, further providing evidence that the extent of alpha(v)beta(3) up-regulation is related to cell damage. These results indicate that alpha(v)beta(3) integrin is dramatically up-regulated in low HRG-expressing breast cancer models that are highly responsive to MIAs, thus providing a novel molecular marker of chemosensitivity influenced by HRG levels in breast cancer cells.  相似文献   

17.
Curcumin, a natural polyphenol in the spice turmeric, has been found to exhibit anticancer activity. Although curcumin is generally considered an antioxidant, it is also able to elicit apoptosis through the generation of ROS, thereby functioning as a pro-oxidant in cancer cells. The present study investigated the effects of antioxidant pretreatment on curcumin-induced cytotoxicity in the human cancer cell lines A2780, MCF-7, and MDA-MB-231. Cytotoxicity was enhanced by trolox, vitamin C or vitamin E; trolox, a water soluble vitamin E derivative, was the most potent. The combination of curcumin (10 μM) and trolox (10-50 μM) induced apoptosis of cancer cells as evidenced by PARP cleavage and caspase-3 activation. Furthermore, expression of the pro-apoptotic protein Bad was up-regulated and expression of the anti-apoptotic proteins Bcl-2 and Bcl-xl was down-regulated in cells that had been treated with trolox plus curcumin. ROS generation was detected in curcumin-treated cells and was significantly enhanced when cells were treated with trolox plus curcumin. Exogenous catalase or SOD1 did not alter cytotoxicity, while over-expression of either catalase or SOD1 did, pointing to the importance of intracellular hydrogen peroxide generation in cell killing. In conclusion, we demonstrated for the first time that antioxidants such as trolox can potentiate cancer cell killing by curcumin, a finding which may help in the development of novel drug combination therapies.  相似文献   

18.
Resveratrol is a naturally occurring anticancer compound present in grapes and wine with antiproliferative properties against breast cancer cells and xenografts. Our objective was to investigate the metabolic alterations that characterize the effects of resveratrol in the human breast cancer cell lines MCF-7 and MDA-MB-231 using high-throughput liquid chromatography-based mass spectrometry. In both cell lines, growth inhibition was dose dependent and accompanied by substantial metabolic changes. For all 21 amino acids analyzed levels increased more than 100-fold at a resveratrol dose of 100?μM with far lower concentrations in MDA-MB-231 compared to MCF-7 cells. Among the biogenic amines and modified amino acids (n?=?16) resveratrol increased the synthesis of serotonin, kynurenine, and spermindine in both cell lines up to 61-fold indicating that resveratrol strongly interacts with cellular biogenic amine metabolism. Among the eicosanoids and oxidized polyunsaturated fatty acids (n?=?17) a pronounced increase in arachidonic acid and its metabolite 12S-HETE was observed in MDA-MB-231 and to a lesser extent in MCF-7 cells, indicating release from cell membrane phospholipids upon activation of phospholipase A? and subsequent metabolism by 12-lipoxygenase. In conclusion, metabolomic analysis elucidated several small molecules as markers for the response of breast cancer cells to resveratrol.  相似文献   

19.
DNA methylation plays an important role in regulation of gene expression and is increasingly being recognized as a determinant of chemosensitivity of human cancers. With the aim of improving the chemotherapeutic efficacy of breast carcinoma, the effect of DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine (5-aza-CdR), on the chemosensitivity of anticancer drugs was investigated. The cytotoxicity of paclitaxel (PTX), adriamycin (ADR), and 5-fluorouracil (5-FU) was analyzed against human breast cancer cell lines, MDA MB 231 and MCF 7 cell lines using the MTT assay, and the synergy of 5-aza-CdR and these agents was determined by Drewinko’s fraction method. The effects of each single agent or the combined treatment on cell cycle arrest were analyzed by flow cytometric analysis. We also investigated the effect of each single agent or the combined treatment of anticancer drugs with 5-aza-CdR on the methylation status of the selected genes by methylation specific PCR. In MDA MB 231 cells, a synergistic antiproliferative effect was observed with a combination of 10 μM 5-aza-CdR and these three anticancer drugs, while in MCF 7 cells, a semiadditive effect was observed. Treatment with 5-aza-CdR and anticancer drug resulted in partial demethylation of a panel of genes including RARβ2, Slit2, GSTP1, and MGMT. Based on these findings, we propose that 5-aza-CdR enhances the chemosensitivity of anticancer drugs in breast cancer cells and may be a promising approach for increasing the chemotherapeutic potential of these anticancer agents for more effective management of breast carcinomas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号