首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.  相似文献   

2.
Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aquatic habitats at a microscale has inspired research on the ecophysiological properties of uncultured microorganisms that thrive in a continuum of dissolved to particulate organic matter. One possibility to link these two aspects is to adopt a “Gleasonian” perspective, i.e., to study aquatic microbial assemblages in situ at the population level rather than looking at microbial community structure, diversity, or function as a whole. This review compiles current knowledge about the role and fate of different populations of heterotrophic picoplankton in marine and inland waters. Specifically, we focus on a growing suite of techniques that link the analysis of bacterial identity with growth, morphology, and various physiological activities at the level of single cells. An overview is given of the potential and limitations of methodological approaches, and factors that might control the population sizes of different microbes in pelagic habitats are discussed.  相似文献   

3.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66°S, 143°E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15°C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top layer across the shelf region.  相似文献   

4.
Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities.  相似文献   

5.
Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole’s rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40–75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80–110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.Subject terms: Metagenomics, Microbial ecology, Biogeochemistry  相似文献   

6.

Background

Bacterial community composition in the marine environment differs from one geographical location to another. Reports that delineate the bacterial diversity of different marine samples from geographically similar location are limited. The present study aims to understand whether the bacterial community compositions from different marine samples harbour similar bacterial diversity since these are geographically related to each other.

Methods and Principal Findings

In the present study, 16S rRNA deep sequencing analysis targeting V3 region was performed using Illumina bar coded sequencing. A total of 22.44 million paired end reads were obtained from the metagenomic DNA of Marine sediment, Rhizosphere sediment, Seawater and the epibacterial DNA of Seaweed and Seagrass. Diversity index analysis revealed that Marine sediment has the highest bacterial diversity and the least bacterial diversity was observed in Rhizosphere sediment. Proteobacteria, Actinobacteria and Bacteroidetes were the dominant taxa present in all the marine samples. Nearly 62–71% of rare species were identified in all the samples and most of these rare species were unique to a particular sample. Further taxonomic assignment at the phylum and genus level revealed that the bacterial community compositions differ among the samples.

Conclusion

This is the first report that supports the fact that, bacterial community composition is specific for specific samples irrespective of its similar geographical location. Existence of specific bacterial community for each sample may drive overall difference in bacterial structural composition of each sample. Further studies like whole metagenomic sequencing will throw more insights to the key stone players and its interconnecting metabolic pathways. In addition, this is one of the very few reports that depicts the unexplored bacterial diversity of marine samples (Marine sediment, Rhizosphere sediment, Seawater) and the host associated marine samples (Seaweed and Seagrass) at higher depths from uncharacterised coastal region of Palk Bay, India using next generation sequencing technology.  相似文献   

7.
The subsurface realm is colonized by microbial communities to depths of >1000 meters below the seafloor (m.b.sf.), but little is known about overall diversity and microbial distribution patterns at the most profound depths. Here we show that not only Bacteria and Archaea but also Eukarya occur at record depths in the subseafloor of the Canterbury Basin. Shifts in microbial community composition along a core of nearly 2 km reflect vertical taxa zonation influenced by sediment depth. Representatives of some microbial taxa were also cultivated using methods mimicking in situ conditions. These results suggest that diverse microorganisms persist down to 1922 m.b.sf. in the seafloor of the Canterbury Basin and extend the previously known depth limits of microbial evidence (i) from 159 to 1740 m.b.sf. for Eukarya and (ii) from 518 to 1922 m.b.sf. for Bacteria.  相似文献   

8.
Loss in microbial diversity affects nitrogen cycling in soil   总被引:3,自引:0,他引:3  
Microbial communities have a central role in ecosystem processes by driving the Earth''s biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated.  相似文献   

9.
玛珥湖是一类具有独特地质构造特征的火山口湖泊, 目前国内外对玛珥湖内微生物多样性的研究还鲜有报道。为了解具有典型玛珥特征的湖光岩湖泊中可培养浮游细菌的种群资源特征, 采用盒式PCR (BOX-PCR) 筛选技术, 通过通用贫营养和原位湖水培养基研究在冬夏两季各水层内获得的可培养细菌种群的差异。结果表明: 不同培养基在不同水层上表现的细菌数量的变化相一致, 为夏季的5 m>1 m>13 m, 冬季的1 m>5 m>13 m, 变形菌占据优势地位, 其它为放线菌、厚壁菌和拟杆菌; 两类培养基上所获培养菌BOX-PCR图谱的多样性相似, 但菌群结构不同; 而细菌多样性在季节上的变化表现为冬季高于夏季, 这与相关湖泊内细菌微生物多样性在夏季会发生减少的特点相似; 相同季节同一水层上不同培养基上获得的培养菌门类不同, 表明此类通用性培养基在培养该环境微生物中的局限。研究的结果为探讨此类型湖泊微生物多样性与环境的关系及分离该环境下特定微生物菌株提供参考。  相似文献   

10.
How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity–stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity–stability relationship. Our experiment demonstrated that the previously found positive diversity–stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate–ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities.  相似文献   

11.
The microbial taxonomic composition of the three domains of life in two coastal plankton samples was assessed by random total community metagenomic sequencing and PCR-based rDNA amplicon deep-sequencing in order to compare the resulting diversity and investigate possible limitations and complementarities of each method. The various universal primer sets, used to amplify different hypervariable rDNA regions, revealed the same major high-level taxonomic groups in Bacteria and unicellular Eukaryota, and showed a scarce Archaea apparent richness. However, significant differences were found between the different primer sets (p-value < 0.05, with the Kolmogorov–Smirnov test), regarding both operational taxonomic unit (OTU) richness and relative abundance of the major high-level taxonomic groups detected. Based on the metagenomic approach, the phylum Bacteroidetes dominated the prokaryotic community, followed by Proteobacteria, while the detected eukaryotic unicellular taxa belonged to the groups of Alveolata, Fungi, Chlorophyta, Stramenopiles and Phaeophyceae. These groups were found to carry genes typically found in microbial communities, which are linked to DNA, RNA and protein metabolism and the synthesis of nucleotides, amino acids, carbohydrates and vitamins. Although our findings suggest that the total community metagenomic approach can provide a more comprehensive picture of the planktonic microbial community structure, a number of issues associated with this approach emerged. These issues include the still relatively high cost compared to amplicon sequencing, the possible low coverage of the full marine diversity, the insufficiency of databases for other gene markers than the small subunit gene, and the bias towards bacterial sequences because of their higher abundance relative to eukaryotes in marine environments.  相似文献   

12.
The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.  相似文献   

13.
Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.  相似文献   

14.
15.
赵卓丽  李冰  蒋宏忱 《微生物学报》2022,62(6):2165-2187
南极大陆冰盖下存在液态水,形成了由冰下湖、冰下河/溪、冰封湖和冰架下水体等组成的冰下水生态系统,具有低温、黑暗和寡营养等极端的环境条件特征。微生物主导了南极冰下水生态系统,其具有丰富多样的种群构成、功能形式和独特的适应机制,在生源元素生物地球化学循环过程中起了重要作用。研究南极冰下微生物群落的生态特征及其参与的生源元素地球化学循环过程,可为揭示地球生命演化和探索外星生命提供指示,具有重要的科学意义。本文综述了南极冰下水生态系统的极端环境条件、冰下微生物的多样性、冰下微生物参与的生物地球化学循环以及冰下微生物的适极机理,最后基于研究现状展望了南极冰下微生物的未来研究方向。  相似文献   

16.
Interactions among microbes and stratification across depths are both believed to be important drivers of microbial communities, though little is known about how microbial associations differ between and across depths. We have monitored the free-living microbial community at the San Pedro Ocean Time-series station, monthly, for a decade, at five different depths: 5 m, the deep chlorophyll maximum layer, 150 m, 500 m and 890 m (just above the sea floor). Here, we introduce microbial association networks that combine data from multiple ocean depths to investigate both within- and between-depth relationships, sometimes time-lagged, among microbes and environmental parameters. The euphotic zone, deep chlorophyll maximum and 890 m depth each contain two negatively correlated ‘modules'' (groups of many inter-correlated bacteria and environmental conditions) suggesting regular transitions between two contrasting environmental states. Two-thirds of pairwise correlations of bacterial taxa between depths lagged such that changes in the abundance of deeper organisms followed changes in shallower organisms. Taken in conjunction with previous observations of seasonality at 890 m, these trends suggest that planktonic microbial communities throughout the water column are linked to environmental conditions and/or microbial communities in overlying waters. Poorly understood groups including Marine Group A, Nitrospina and AEGEAN-169 clades contained taxa that showed diverse association patterns, suggesting these groups contain multiple ecological species, each shaped by different factors, which we have started to delineate. These observations build upon previous work at this location, lending further credence to the hypothesis that sinking particles and vertically migrating animals transport materials that significantly shape the time-varying patterns of microbial community composition.  相似文献   

17.
Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated with Chloroflexi (∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.  相似文献   

18.
Most microorganisms remain uncultivated, and typically their ecological roles must be inferred from diversity and genomic studies. To directly measure functional roles of uncultivated microbes, we developed Chip-stable isotope probing (SIP), a high-sensitivity, high-throughput SIP method performed on a phylogenetic microarray (chip). This approach consists of microbial community incubations with isotopically labeled substrates, hybridization of the extracted community rRNA to a microarray and measurement of isotope incorporation—and therefore substrate use—by secondary ion mass spectrometer imaging (NanoSIMS). Laboratory experiments demonstrated that Chip-SIP can detect isotopic enrichment of 0.5 atom % 13C and 0.1 atom % 15N, thus permitting experiments with short incubation times and low substrate concentrations. We applied Chip-SIP analysis to a natural estuarine community and quantified amino acid, nucleic acid or fatty acid incorporation by 81 distinct microbial taxa, thus demonstrating that resource partitioning occurs with relatively simple organic substrates. The Chip-SIP approach expands the repertoire of stable isotope-enabled methods available to microbial ecologists and provides a means to test genomics-generated hypotheses about biogeochemical function in any natural environment.  相似文献   

19.
Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species—the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E−9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E−14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356–896 OTUs) was >2-fold higher than in the MI (112–567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.  相似文献   

20.
Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号