首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundThe Coq protein complex assembled from several Coq proteins is critical for coenzyme Q6 (CoQ6) biosynthesis in yeast. Secondary CoQ10 deficiency is associated with mitochondrial DNA (mtDNA) mutations in patients. We previously demonstrated that carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) suppressed CoQ10 levels and COQ5 protein maturation in human 143B cells.MethodsThis study explored the putative COQ protein complex in human cells through two-dimensional blue native-polyacrylamide gel electrophoresis and Western blotting to investigate its status in 143B cells after FCCP treatment and in cybrids harboring the mtDNA mutation that caused myoclonic epilepsy with ragged-red fibers (MERRF) syndrome. Ubiquinol-10 and ubiquinone-10 levels were detected by high-performance liquid chromatography. Mitochondrial energy status, mRNA levels of various PDSS and COQ genes, and protein levels of COQ5 and COQ9 in cybrids were examined.ResultsA high-molecular-weight protein complex containing COQ5, but not COQ9, in the mitochondria was identified and its level was suppressed by FCCP and in cybrids with MERRF mutation. That was associated with decreased mitochondrial membrane potential and mitochondrial ATP production. Total CoQ10 levels were decreased under both conditions, but the ubiquinol-10:ubiquinone-10 ratio was increased in mutant cybrids. The expression of COQ5 was increased but COQ5 protein maturation was suppressed in the mutant cybrids.ConclusionsA novel COQ5-containing protein complex was discovered in human cells. Its destabilization was associated with reduced CoQ10 levels and mitochondrial energy deficiency in human cells treated with FCCP or exhibiting MERRF mutation.General significanceThe findings elucidate a possible mechanism for mitochondrial dysfunction-induced CoQ10 deficiency in human cells.  相似文献   

2.
《Free radical research》2013,47(11):1338-1344
Abstract

Despite their being good markers of oxidative stress for clinical use, little is known about ubiquinol-10 (reduced coenzyme Q10) and ubiquinone-10 (oxidized coenzyme Q10) levels in foetuses and their mothers. This study investigates oxidative stress in 10 healthy maternal venous, umbilical arterial and venous bloods after vaginal delivery by measuring ubiquinol-10 and ubiquinone-10 levels. Serum ubiquinol-10 and ubiquinone-10 levels were measured by HPLC with a highly sensitive electrochemical detector. Maternal venous ubiquinol-10 and ubiquinone-10 levels were significantly higher than umbilical arterial and venous levels (all p < 0.001). However, the ubiquinone-10/total coenzyme Q10 (CoQ10) ratio, which reflects the redox status, was significantly higher in umbilical arterial and umbilical venous blood compared to maternal venous blood (all p < 0.001). The ubiquinone-10/total CoQ10 ratio was higher in umbilical arterial than in umbilical venous blood (p < 0.01). The present study demonstrated that foetuses were under higher oxidative stress than their mothers.  相似文献   

3.
4.

Background

Coenzyme Q10 (CoQ10) and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress.

Methodology/Principal Findings

To test these concepts, we have evaluated the effects of CoQ10, coenzyme Q2 (CoQ2), idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ10 deficiency. A final concentration of 5 µM of each compound was chosen to approximate the plasma concentration of CoQ10 of patients treated with oral ubiquinone. CoQ10 supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ10 deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements.

Conclusions/Significance

These results indicate that: 1) pharmacokinetics of CoQ10 in reaching the mitochondrial respiratory chain is delayed; 2) short-tail ubiquinone analogs cannot replace CoQ10 in the mitochondrial respiratory chain under conditions of CoQ10 deficiency; and 3) oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ10 deficiencies should be treated with CoQ10 supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ2. Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present.  相似文献   

5.
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor.Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway.Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing.Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment.Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.  相似文献   

6.
《Biomarkers》2013,18(8):764-766
Coenzyme Q10 (CoQ10) is present in humans in both the reduced (ubiquinol, CoQ10H2) and oxidized (ubiquinone, CoQ10) forms. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation, and is necessary for ATP production. Total, reduced and oxidized CoQ10 levels in skeletal muscle of 148 children were determined by HPLC coupled with electrochemical detection, and we established three level thresholds for total CoQ10 in muscle. We defined as “severe deficiency”, CoQ10 levels falling in the range between 0.82 and 4.88 μmol/g tissue; as “intermediate deficiency”, those ranging between 5.40 and 9.80 μmol/g tissue, and as “mild deficiency”, the amount of CoQ10 included between 10.21 and 19.10 μmol/g tissue. Early identification of CoQ10 deficiency has important implications in children, not only for those with primary CoQ10 defect, but also for patients with neurodegenerative disorders, in order to encourage earlier supplementation with this agent also in mild and intermediate deficiency.  相似文献   

7.
For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate cardiac contractility and endothelial dysfunction. Recent data from our laboratory showed a strong correlation between endothelium bound extra cellular SOD (ecSOD) and flow-dependent endothelial-mediated dilation, a functional parameter commonly used as a biomarker of vascular function. The study also highlighted that supplementation with CoQ10 that significantly affects endothelium-bound ecSOD activity. Furthermore, we showed a significant correlation between increase in endothelial bound ecSOD activity and improvement in FMD after CoQ10 supplementation. The effect was more pronounced in patients with low basal values of ecSOD. Finally, we summarize the findings, also from our laboratory, on the implications of CoQ10 in seminal fluid integrity and sperm cell motility.  相似文献   

8.

Background

Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q10 (CoQ10 or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).

Scope of review

Here, we describe clinical and molecular features of CoQ10 deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ10 deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ10 biosynthesis, often improve with CoQ10 supplementation. In vitro and in vivo studies of CoQ10 deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ10 deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE.

Major conclusions

CoQ10 deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules.

General significance

Studies of CoQ10 deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010.  相似文献   

9.
Primary coenzyme Q10 (CoQ10) deficiencies are rare, clinically heterogeneous disorders caused by mutations in several genes encoding proteins involved in CoQ10 biosynthesis. CoQ10 is an essential component of the electron transport chain (ETC), where it shuttles electrons from complex I or II to complex III. By whole-exome sequencing, we identified five individuals carrying biallelic mutations in COQ4. The precise function of human COQ4 is not known, but it seems to play a structural role in stabilizing a multiheteromeric complex that contains most of the CoQ10 biosynthetic enzymes. The clinical phenotypes of the five subjects varied widely, but four had a prenatal or perinatal onset with early fatal outcome. Two unrelated individuals presented with severe hypotonia, bradycardia, respiratory insufficiency, and heart failure; two sisters showed antenatal cerebellar hypoplasia, neonatal respiratory-distress syndrome, and epileptic encephalopathy. The fifth subject had an early-onset but slowly progressive clinical course dominated by neurological deterioration with hardly any involvement of other organs. All available specimens from affected subjects showed reduced amounts of CoQ10 and often displayed a decrease in CoQ10-dependent ETC complex activities. The pathogenic role of all identified mutations was experimentally validated in a recombinant yeast model; oxidative growth, strongly impaired in strains lacking COQ4, was corrected by expression of human wild-type COQ4 cDNA but failed to be corrected by expression of COQ4 cDNAs with any of the mutations identified in affected subjects. COQ4 mutations are responsible for early-onset mitochondrial diseases with heterogeneous clinical presentations and associated with CoQ10 deficiency.  相似文献   

10.

Background

Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q10 plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ10 supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.

Principal Findings

We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ10 formulation (Qter®) and native CoQ10. Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ10 content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.

Conclusions

The improved cellular energy metabolism related to increased CoQ10 content represents a strong rationale for the clinical use of coenzyme Q10 and highlights the biological effects of Qter®, that make it the eligible CoQ10 formulation for the ubiquinone supplementation.  相似文献   

11.
Yeast Coq5p is required for the biosynthesis of coenzyme Q6 (CoQ6), but its human homolog has not been studied. We purified soluble recombinant human COQ5 protein under native conditions and generated an antibody recognizing both precursor and mature forms of COQ5. Mitochondrial localization of the mature form in 143B cells was demonstrated with this antibody. Moreover, a chemical uncoupler in a dose that suppressed CoQ10 levels downregulated the mature form but augmented the precursor form of COQ5. The results that knockdown of the COQ5 gene reduced CoQ10 levels further indicated the critical role of COQ5 in the biosynthesis of CoQ10.  相似文献   

12.
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome.  相似文献   

13.
We investigated the influence of carrier systems for different commercially available water-soluble formulations for coenzyme Q10 on structural changes of model lipid membranes formed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and by a mixture of phosphatidylcholine and sphingomyelin (2.4:1). Structural changes in the membranes were measured using fluorescence anisotropy, electron paramagnetic resonance, and differential scanning calorimetry. Two fluorophores and two spin probes were used to monitor membrane characteristics close to the water-lipid interface and in the middle of the bilayer of the model lipid membranes. Different water-soluble carrier systems were tested. These data show that different systems can facilitate penetration of CoQ10 in the lipid membranes, where an increase in the lipid order parameter was observed. In addition, water soluble CoQ10 formulations better protect lipids from oxidation in liposome solution. With the exception of the carriers in an emulsified formulation of CoQ10, those in the other samples did not have any significant effects on membrane fluidity.  相似文献   

14.
Abstract

Fibromyalgia (FM) is characterized by generalized pain and chronic fatigue of unknown etiology. To evaluate the role of oxidative stress in this disorder, we measured plasma levels of ubiquinone-10, ubiquinol-10, free cholesterol (FC), cholesterol esters (CE), and free fatty acids (FFA) in patients with juvenile FM (n = 10) and in healthy control subjects (n = 67). Levels of FC and CE were significantly increased in juvenile FM as compared with controls, suggesting the presence of hypercholesterolemia in this disease. However, plasma level of ubiquinol-10 was significantly decreased and the ratio of ubiquinone-10 to total coenzyme Q10 (%CoQ10) was significantly increased in juvenile FM relative to healthy controls, suggesting that FM is associated with coenzyme Q10 deficiency and increased oxidative stress. Moreover, plasma level of FFA was significantly higher and the content of polyunsaturated fatty acids (PUFA) in total FFA was significantly lower in FM than in controls, suggesting increased tissue oxidative damage in juvenile FM. Interestingly, the content of monoenoic acids, such as oleic and palmitoleic acids, was significantly increased in FM relative to controls, probably to compensate for the loss of PUFA. Next, we examined the effect of ubiquinol-10 supplementation (100 mg/day for 12 weeks) in FM patients. This resulted in an increase in coenzyme Q10 levels and a decrease in %CoQ10. No changes were observed in FFA levels or their composition. However, plasma levels of FC and CE significantly decreased and the ratio of FC to CE also significantly decreased, suggesting that ubiquinol-10 supplementation improved cholesterol metabolism. Ubiquinol-10 supplementation also improved chronic fatigue scores as measured by the Chalder Fatigue Scale.  相似文献   

15.
16.
Deficiency of Coenzyme Q10 (CoQ10) in muscle has been associated with a spectrum of diseases including infantile-onset multi-systemic diseases, encephalomyopathies with recurrent myobinuria, cerebellar ataxia, and pure myopathy. CoQ10 deficiency predominantly affects children, but patients have presented with adult-onset cerebellar ataxia or myopathy. Mutations in the CoQ10 biosynthetic genes, COQ2 and PDSS2, have been identified in children with the infantile form of CoQ10 deficiency; however, the molecular genetic bases of adult-onset CoQ10 deficiency remains undefined.  相似文献   

17.
Mclk1 (also known as Coq7) and Coq3 code for mitochondrial enzymes implicated in the biosynthetic pathway of ubiquinone (coenzyme Q or UQ). Mclk1+/− mice are long-lived but have dysfunctional mitochondria. This phenotype remains unexplained, as no changes in UQ content were observed in these mutants. By producing highly purified submitochondrial fractions, we report here that Mclk1+/− mice present a unique mitochondrial UQ profile that was characterized by decreased UQ levels in the inner membrane coupled with increased UQ in the outer membrane. Dietary-supplemented UQ10 was actively incorporated in both mitochondrial membranes, and this was sufficient to reverse mutant mitochondrial phenotypes. Further, although homozygous Coq3 mutants die as embryos like Mclk1 homozygous null mice, Coq3+/− mice had a normal lifespan and were free of detectable defects in mitochondrial function or ubiquinone distribution. These findings indicate that MCLK1 regulates both UQ synthesis and distribution within mitochondrial membranes.  相似文献   

18.
Nephrotic syndrome (NS), a frequent chronic kidney disease in children and young adults, is the most common phenotype associated with primary coenzyme Q10 (CoQ10) deficiency and is very responsive to CoQ10 supplementation, although the pathomechanism is not clear. Here, using a mouse model of CoQ deficiency-associated NS, we show that long-term oral CoQ10 supplementation prevents kidney failure by rescuing defects of sulfides oxidation and ameliorating oxidative stress, despite only incomplete normalization of kidney CoQ levels and lack of rescue of CoQ-dependent respiratory enzymes activities. Liver and kidney lipidomics, and urine metabolomics analyses, did not show CoQ metabolites. To further demonstrate that sulfides metabolism defects cause oxidative stress in CoQ deficiency, we show that silencing of sulfide quinone oxido-reductase (SQOR) in wild-type HeLa cells leads to similar increases of reactive oxygen species (ROS) observed in HeLa cells depleted of the CoQ biosynthesis regulatory protein COQ8A. While CoQ10 supplementation of COQ8A depleted cells decreases ROS and increases SQOR protein levels, knock-down of SQOR prevents CoQ10 antioxidant effects. We conclude that kidney failure in CoQ deficiency-associated NS is caused by oxidative stress mediated by impaired sulfides oxidation and propose that CoQ supplementation does not significantly increase the kidney pool of CoQ bound to the respiratory supercomplexes, but rather enhances the free pool of CoQ, which stabilizes SQOR protein levels rescuing oxidative stress.  相似文献   

19.
《BBA》2020,1861(7):148192
Mutations of many PDSS and COQ genes are associated with primary coenzyme Q10 (CoQ10) deficiency, whereas mitochondrial DNA (mtDNA) mutations might cause secondary CoQ10 deficiency. Previously, we found that COQ5 and COQ9 proteins are present in different protein complexes in the mitochondria in human 143B cells and demonstrated that COQ5 and COQ9 knockdown suppresses CoQ10 levels. In the present study, we characterized other PDSS and COQ proteins and examined possible crosstalk among various PDSS and COQ proteins. Specific antibodies and mitochondrial localization of mature proteins for these proteins, except PDSS1 and COQ2, were identified. Multiple isoforms of PDSS2 and COQ3 were observed. Moreover, PDSS1, PDSS2, and COQ3 played more important roles in maintaining the stability of the other proteins. Protein complexes containing PDSS2, COQ3, COQ4, COQ6, or COQ7 protein in the mitochondria were detected. Two distinct PDSS2-containing protein complexes could be identified. Transient knockdown of these genes, except COQ6 and COQ8, decreased CoQ10 levels, but only COQ7 knockdown hampered mitochondrial respiration and caused increased ubiquinol:ubiquinone ratios and accumulation of a putative biosynthetic intermediate with reversible redox property as CoQ10. Furthermore, suppressed levels of PDSS2 and various COQ proteins (except COQ3 and COQ8A) were found in cybrids containing the pathogenic mtDNA A8344G mutation or in FCCP-treated 143B cells, which was similar to our previous findings for COQ5. These novel findings may prompt the elucidation of the putative CoQ synthome in human cells and the understanding of these PDSS and COQ protein under physiological and pathological conditions.  相似文献   

20.
Ubiquinone (coenzyme Q10 or CoQ10) is a lipid-soluble component of virtually all cell membranes and has multiple metabolic functions. Deficiency of CoQ10 (MIM 607426) has been associated with five different clinical presentations that suggest genetic heterogeneity, which may be related to the multiple steps in CoQ10 biosynthesis. Patients with all forms of CoQ10 deficiency have shown clinical improvements after initiating oral CoQ10 supplementation. Thus, early diagnosis is of critical importance in the management of these patients. This year, the first molecular defect causing the infantile form of primary human CoQ10 deficiency has been reported. The availability of genetic testing will allow for a better understanding of the pathogenesis of this disease and early initiation of therapy (even presymptomatically in siblings of patients) in this otherwise life-threatening infantile encephalomyopathy. Special issue dedicated to John P. Blass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号