首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectivesTo study the role of secreted phospholipase A2 (sPLA2) in the pathophysiology of human osteoclasts (OCs).MethodsImmunohistochemistry and sPLA2 inhibitors were to determine the localization of sPLA2 and its role in OCs biology.ResultssPLA2 is expressed by OCs from healthy fetal bone and OCs from Paget's disease but not in normal bone. Inhibition of sPLA2 greatly reduces in vitro osteoclastogenesis.DiscussionThe decrease in OCs formed could be attributed to a decline in the viability of CD14+ OC precursors as well as a reduced viability of mature OCs. Inhibition of sPLA2 strongly decreases bone resorption by OCs independently of actin cytoskeleton remodeling, probably also by reducing OCs viability.ConclusionHigh amounts of this enzyme are present in fetal and Pagetic bone samples. Inhibition of sPLA2 in vitro decreases osteoclastogenesis and OC activity and might constitute an interesting pharmacologic target for diseases with high bone turnover.  相似文献   

2.
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.  相似文献   

3.
Mature osteoclasts, multinucleated giant cells responsible for bone resorption, are terminally differentiated cells with a short life span. Recently, we have demonstrated that osteoclast apoptosis is regulated by ERK activity and Bcl-2 family member Bim. In this paper, we summarize the methods we used to study osteoclast apoptosis in vitro and in vivo. Using adenovirus and retrovirus vectors, we were able to introduce foreign genes into osteoclasts and examine their effects on osteoclast survival in vitro. In addition, we established the modified methods for in situ hybridization and BrdU labeling of bone sections from mice to study osteoclast survival in vivo. The detailed methods described here could be useful for studying the biological process in bone.  相似文献   

4.
The cytosolic (group IV) phospholipase A2 (cPLA2s) family contains six members. We have prepared recombinant proteins for human α, mouse β, human γ, human δ, human ϵ, and mouse ζ cPLA2s and have studied their interfacial kinetic and binding properties in vitro. Mouse cPLA2β action on phosphatidylcholine vesicles is activated by anionic phosphoinositides and cardiolipin but displays a requirement for Ca2+ only in the presence of cardiolipin. This activation pattern is explained by the effects of anionic phospholipids and Ca2+ on the interfacial binding of mouse cPLA2β and its C2 domain to vesicles. Ca2+-dependent binding of mouse cPLA2β to cardiolipin-containing vesicles requires a patch of basic residues near the Ca2+-binding surface loops of the C2 domain, but binding to phosphoinositide-containing vesicles does not depend on any specific cluster of basic residues. Human cPLA2δ also displays Ca2+- and cardiolipin-enhanced interfacial binding and activity. The lysophospholipase, phospholipase A1, and phospholipase A2 activities of the full set of mammalian cPLA2s were quantified. The relative level of these activities is very different among the isoforms, and human cPLA2δ stands out as having relatively high phospholipase A1 activity. We also tested the susceptibility of all cPLA2 family members to a panel of previously reported inhibitors of human cPLA2α and analogs of these compounds. This led to the discovery of a potent and selective inhibitor of mouse cPLA2β. These in vitro studies help determine the regulation and function of the cPLA2 family members.  相似文献   

5.
BackgroundOsteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear.PurposeWe explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo.MethodsThe in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model.ResultsWe found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2–10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression.ConclusionsKir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.  相似文献   

6.
《Phytomedicine》2015,22(9):813-819
BackgroundWhile radiation-based therapies are effective for treating numerous malignancies, such treatments can also induce osteoporosis.PurposeWe assessed the antiosteoporotic properties of total saponins extracted from the leaves of Panax notoginseng (LPNS) in a mouse model of radiation-induced osteoporosis and in vitro.Study design/methodsThe bone mineral densities, the marker of bone formation and resorption, and inflammatory factors were measured in vivo. Cell proliferation and differentiation were detected in vitro.ResultsThe results showed that bone mineral densities in irradiated mice administered LPNS were significantly increased compared to those in irradiated mice which had not received LPNS. LPNS attenuated the inflammation caused by irradiation, and significantly increased blood serum AKP activity, the mRNA levels of RUNX2 and osteoprotegerin, and the numbers of CFU-Fs formed by bone marrow cells collected from irradiated mice. In contrast, LPNS decreased the numbers of osteoclast precursor cells (CD117+/RANKL+ cells and CD71+/CD115+ cells) and the mRNA levels of TRAP and ATP6i. These results suggest that LPNS functions as a negative regulator of bone resorption. In vitro assays showed that LPNS promoted the differentiation of bone marrow mesenchymal stem cells and mononuclear cells into osteoblasts and osteoclasts, respectively, but had no effect on osteoclast activation.ConclusionThese results demonstrate that LPNS has significant antiosteoporotic activity, which may warrant further investigations concerning its therapeutic effects in treating radiation-induced osteoporosis.  相似文献   

7.
Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A2 (cPLA2), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA2. Inhibition of RhoA, Rho kinase and cPLA2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA2. The immunofluorescence staining showed that ROCK1 or ROCK2, two isoforms of Rho kinase, was co-localized with cPLA2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK1 or ROCK2 bonded directly with cPLA2 and phospho-cPLA2. When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA2 activation.  相似文献   

8.
Cytosolic phospholipase A2α (cPLA2α) up-regulation has been reported in human colorectal cancer cells, thus we aimed to elucidate its role in the proliferation of the human colorectal cancer cell line, HT-29. EGF caused a rapid activation of cPLA2α which coincided with a significant increase in cell proliferation. The inhibition of cPLA2α activity by pyrrophenone or by antisense oligonucleotide against cPLA2α (AS) or inhibition of prostaglandin E2 (PGE2) production by indomethacin resulted with inhibition of cell proliferation, that was restored by addition of PGE2. The secreted PGE2 activated both protein kinase A (PKA) and PKB/Akt pathways via the EP2 and EP4 receptors. Either, the PKA inhibitor (H-89) or the PKB/Akt inhibitor (Ly294002) caused a partial inhibition of cell proliferation which was restored by PGE2. But, inhibited proliferation in the presence of both inhibitors could not be restored by addition of PGE2. AS or H-89, but not Ly294002, inhibited CREB activation, suggesting that CREB activation is mediated by PKA. AS or Ly294002, but not H-89, decreased PKB/Akt activation as well as the nuclear localization of β-catenin and cyclin D1 and increased the plasma membrane localization of β-catenin with E-cadherin, suggesting that these processes are regulated by the PKB pathway. Similarly, Caco-2 cells exhibited cPLA2α dependent proliferation via activation of both PKA and PKB/Akt pathways. In conclusion, our findings suggest that the regulation of HT-29 proliferation is mediated by cPLA2α-dependent PGE2 production. PGE2via EP induces CREB phosphorylation by the PKA pathway and regulates β-catenin and cyclin D1 cellular localization by PKB/Akt pathway.  相似文献   

9.
Summary The P2X7 nucleotide receptor is an ATP-gated ion channel that plays an important role in bone cell function. Here, we investigated the effects of L-tyrosine derivatives 1–3 as potent P2X7 antagonists on human primary osteoclasts. We found that the level of expression of P2X7 receptor increased after treatment with the derivatives 1–3, together with the induction of high levels of apoptosis. This effect is associated with activation of caspase-3 and inhibition of expression of IL-6. Interestingly, no pro-apoptotic effect of compounds 1–3 was found on human osteoblasts. Our results suggest that the development of specific P2X7 receptor antagonists may be considered a useful tool to modulate apoptosis of human osteoclasts. Since bone loss due to osteoclast-mediated resorption represents one of the major unsolved problem in osteopenic disorders, the identification of molecules able to induce apoptosis of osteoclasts is of great interest for the development of novel therapeutic strategies.  相似文献   

10.
Lactosylceramide (LacCer) is a member of the glycosphingolipid family and is known to be a bioactive lipid in various cell physiological processes. However, the direct targets of LacCer and cellular events mediated by LacCer are largely unknown. In this study, we examined the effect of LacCer on the release of arachidonic acid (AA) and the activity of cytosolic phospholipase A2α (cPLA2α). In CHO-W11A cells, treatment with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthase, reduced the glycosphingolipid level, and the release of AA induced by A23187 or platelet-activating factor was inhibited. The addition of LacCer reversed the PPMP effect on the stimulus-induced AA release. Exogenous LacCer stimulated the release of AA, which was decreased by treatment with an inhibitor of cPLA2α or silencing of the enzyme. Treatment of CHO-W11A cells with LacCer induced the translocation of full-length cPLA2α and its C2 domain from the cytosol to the Golgi apparatus. LacCer also induced the translocation of the D43N mutant of cPLA2α. Treatment of L929 cells with TNF-α induced LacCer generation and mediated the translocation of cPLA2α and AA release, which was attenuated by treatment with PPMP. In vitro studies were then conducted to test whether LacCer interacts directly with cPLA2α. Phosphatidylcholine vesicles containing LacCer increased cPLA2α activity. LacCer bound to cPLA2α and its C2 domain in a Ca2+-independent manner. Thus, we propose that LacCer is a direct activator of cPLA2α.  相似文献   

11.
The association of cytosolic phospholipase A2-α (cPLA2α) with intracellular membranes is central to the generation of free arachidonic acid and thromboxane A2 in activated platelets. Despite this, the site and nature of this membrane association has not been fully characterised upon platelet activation. High resolution imaging showed that cPLA2α was distributed in a partly structured manner throughout the resting platelet. Upon glass activation or thrombin stimulation, cPLA2α relocated to a peripheral region corresponding to the platelet plasma membrane. Upon thrombin stimulation of platelets a major pool of cPLA2α was associated with the plasma membrane in an EGTA-resistant manner. EGTA-resistant membrane binding was abolished upon de-polymerisation of actin filaments by DNase I and furthermore, cPLA2α co-immunoprecipitated with actin upon thrombin stimulation of platelets. Immunofluorescence microscopy studies revealed that, upon platelet activation, cPLA2α and actin co-localised at the plasma membrane. Thus we have identified a novel mechanism for the interaction of cPLA2α with its membrane substrate via interaction with actin.  相似文献   

12.
《Phytomedicine》2015,22(12):1120-1124
BackgroundAnimal experiment studies have revealed a positive association between intake of citrus fruits and bone health. Nomilin, a limonoid present in citrus fruits, is reported to have many biological activities in mammalian systems, but the mechanism of nomilin on bone metabolism regulation is currently unclear.PurposeTo reveal the mechanism of nomilin on osteoclastic differentiation of mouse primary bone marrow-derived macrophages (BMMs) and the mouse RAW 264.7 macrophage cell line into osteoclasts.Study designControlled laboratory study. Effects of nomilin on osteoclastic differentiation were studied in in vitro cell cultures.MethodsCell viability of RAW 264.7 cells and BMMs was measured with the Cell Counting Kit. TRAP-positive multinucleated cells were counted as osteoclast cell numbers. The number and area of resorption pits were measured as bone-resorbing activity. Osteoclast-specific genes expression was evaluated by quantitative real-time PCR; and proteins expression was evaluated by western blot.ResultsNomilin significantly decreased TRAP-positive multinucleated cell numbers compared with the control, and exhibited no cytotoxicity. Nomilin decreased bone resorption activity. Nomilin downregulated osteoclast-specific genes, NFATc1 and TRAP mRNA levels. Furthermore, nomilin suppressed MAPK signaling pathways.ConclusionThis study demonstrates clearly that nomilin has inhibitory effects on osteoclastic differentiation in vitro. These findings indicate that nomilin-containing herbal preparations have potential utility for the prevention of bone metabolic diseases.  相似文献   

13.
Adipose tissue-derived stromal cells (ADSCs) are of interest for regenerative medicine as they are isolated easily and can differentiate into multiple cell lineages. Studies of their in vitro proliferation, survival, and differentiation are common; however, genetic effects on these phenotypes remain unknown. To test if these phenotypes are genetically regulated, ADSCs were isolated from three genetically diverse inbred mouse strains- C57BL/6J (B6), BALB/cByJ (BALB), and DBA/2J (D2)- in which genetic regulation of hematopoietic stem function is well known. ADSCs from all three strains differentiated into osteogenic and chondrogenic lineages in vitro. ADSCs from BALB grew least well in vitro, probably due to apoptotic cell death after several days in culture. BALB ADSCs were also the most susceptible to the free radical inducers menadione and H2O2. ADSCs from the three possible F1 hybrids were employed to further define genetic regulation of ADSC phenotypes. D2, but not B6, alleles stimulated ADSC expansion in BALB cells. In contrast, B6, but not D2, alleles rescued BALB H2O2 resistance. We conclude that low oxidative stress resistance does not limit BALB ADSC growth in vitro, as these phenotypes are genetically regulated independently. In addition, ADSCs from these strains are an appropriate model system to investigate genetic regulation of ADSC apoptosis and stress resistance in future studies. Such investigations are essential to optimize cell expansion and differentiation and thus, potential for regenerative medicine.  相似文献   

14.
ObjectivesGlaucoma is characterized by progressive damage of the retinal ganglion cells (RGCs), resulting in irreversible vision loss. Cannabinoids (CBs) ameliorate several factors that contribute to the progression of glaucoma, including increased intraocular pressure (IOP), degeneration of RGC and optical nerve (ON) damage. However, a direct correlation of specific CBs with the molecular events pertaining to glaucoma pathology is not well established. Therefore, this study aims to evaluate the role of cannabinol (CBN) on RGC protection, modulation of IOP, and its effects on the level of extracellular matrix (ECM) proteins using both in vitro and in vivo models of glaucoma.Methods and resultsWhen exposed to elevated hydrostatic pressure, CBN, in a dose-dependent manner, protected differentiated mouse 661W retinal ganglion precursor-like cells from pressure-induced toxicity. In human trabecular meshwork cells (hTM), CBN attenuated changes in the ECM proteins, including fibronectin and α-smooth muscle actin (α-SMA), as well as mitogen-activated protein kinases (phospho-ERK1/2) in the presence or absence of transforming growth factor-beta 2 (TGF-β2) induced stress. Ocular pharmacokinetic parameters were evaluated post-intravitreal (IVT) CBN delivery in vivo. Furthermore, we demonstrated that IVT-administered CBN improved pattern electroretinogram (pERG) amplitudes and reduced IOP in a rat episcleral vein laser photocoagulation model of glaucoma.ConclusionCBN promotes neuroprotection, abrogates changes in ECM protein, and normalizes the IOP levels in the eye. Therefore, our observations in the present study indicate a therapeutic potential for CBN in the treatment of glaucoma.  相似文献   

15.
Although both an active form of the vitamin D metabolite, 1,25(OH)2D3, and the vitamin D analogue, ED71 have been used to treat osteoporosis, anti-bone resorbing activity is reportedly seen only in ED71- but not in 1,25(OH)2D3 -treated patients. In addition, how ED71 inhibits osteoclast activity in patients has not been fully characterized. Recently, HIF1α expression in osteoclasts was demonstrated to be required for development of post-menopausal osteoporosis. Here we show that ED71 but not 1,25(OH)2D3, suppress HIF1α protein expression in osteoclasts in vitro. We found that 1,25(OH)2D3 or ED71 function in osteoclasts requires the vitamin D receptor (VDR). ED71 was significantly less effective in inhibiting M-CSF and RANKL-stimulated osteoclastogenesis than was 1,25(OH)2D3 in vitro. Downregulation of c-Fos protein and induction of Ifnβ mRNA in osteoclasts, both of which reportedly block osteoclastogenesis induced by 1,25(OH)2D3 in vitro, were both significantly higher following treatment with 1,25(OH)2D3 than with ED71. Thus, suppression of HIF1α protein activity in osteoclasts in vitro, which is more efficiently achieved by ED71 rather than by 1,25(OH)2D3, could be a reliable read-out in either developing or screening reagents targeting osteoporosis.  相似文献   

16.
Constitutive phosphorylation of protein kinase B (AKT) is a common feature of cancer caused by genetic alteration in the phosphatase and tensin homolog (PTEN) gene and is associated with poor prognosis. This study determined the role of cytosolic phospholipase A2α (cPLA2α) in AKT, extracellular signal-regulated kinase (ERK) and androgen receptor (AR) signaling in PTEN-null/mutated prostate cancer cells. Doxycycline (Dox)-induced expression of cPLA2α led to an increase in pAKT, pGSK3β and cyclin D1 levels in LNCaP cells that possess a PTEN frame-shift mutation. In contrast, silencing cPLA2α expression with siRNA decreased pAKT, pGSK3β and cyclin D1 levels in both PC-3 (PTEN deletion) and LNCaP cells. Silencing of cPLA2α decreased pERK and AR protein levels. The inhibitory effect of cPLA2α siRNA on pAKT and AR protein levels was reduced by the addition of arachidonic acid (AA), whereas the stimulatory effect of AA on pAKT, pERK and AR levels was decreased by an inhibitor of 5-hydroxyeicosatetraenoic acid production. Pharmacological blockade of cPLA2α with Efipladib reduced pAKT and AR levels with a concomitant inhibition of PC-3 and LNCaP cell proliferation. These results demonstrate an important role for cPLA2α in sustaining AKT, ERK and AR signaling in PTEN-null/mutated prostate cancer cells and provide a potential molecular target for treating prostate cancer.  相似文献   

17.
Osteoclasts are large, multinucleated cells responsible for the resorption of mineralized bone matrix. These cells are critical players in the bone turnover involved in bone homeostasis. Osteoclast activity is connected to the establishment and expansion of skeletal metastases from a number of primary neoplasms. Thus, the formation and activation of osteoclasts is an area of research with many potential avenues for clinical translation. Past studies of osteoclast biology have utilized primary murine cells cultured in vitro. Recently, techniques have been described that involve the generation of osteoclasts from human precursor cells. However, these protocols are often time-consuming and insufficient for generating large numbers of osteoclasts. We therefore developed a simplified protocol by which human osteoclasts may be easily and reliably generated in large numbers in vitro. In this study, osteoclasts were differentiated from bone marrow cells that had been aliquotted and frozen. Cells were generated by culture with recombinant macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). Both human and murine RANKL were shown to efficiently generate osteoclasts, although higher concentrations of murine RANKL were required. Formation of osteoclasts was demonstrated qualitatively by tartrate-resistant acid phosphatase (TRAP) staining. These cells were fully functional, as confirmed by their ability to form resorption pits on cortical bone slices. Functional human osteoclasts can be difficult to generate in vitro by current protocols. We have demonstrated a simplified system for the generation of human osteoclasts in vitro that allows for large numbers of osteoclasts to be obtained from a single donor.  相似文献   

18.
BackgroundSince enhanced bone resorption due to osteoclast differentiation and activation cause skeletal diseases, there is a growing need in therapeutics for combating bone-resorbing osteoclasts. Botanical antioxidants are being increasingly investigated for their health-promoting effects on bone. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects.PurposeThis study aimed to determine whether linarin present in Cirsium setidens water extracts (CSE) and its aglycone acacetin inhibited osteoclastogenesis of RANKL-exposed RAW 264.7 murine macrophages for 5 days.MethodsThis study assessed the osteoprotective effects of CSE, linarin and acacetin on RANKL-induced differentiation and activation of osteoclasts by using MTT assay, TRAP staining, Western blot analysis, bone resorption assay actin ring staining, adhesion assay and immunocytochemical assay. This study explored the underlying mechanisms of their osteoprotection, and identified major components present in CSE by HPLC analysis.ResultsLinarin and pectolinarin were identified as major components of CSE. Nontoxic linarin and acacetin as well as CSE, but not pectolinarin attenuated the RANKL-induced macrophage differentiation into multinucleated osteoclasts, and curtailed osteoclastic bone resorption through reducing lacunar acidification and bone matrix degradation in the osteoclast-bone interface. Linarin and acacetin in CSE reduced the transmigration and focal contact of osteoclasts to bone matrix-mimicking RGD peptide. Such reduction was accomplished by inhibiting the induction of integrins, integrin-associated proteins of paxillin and gelsolin, cdc42 and CD44 involved in the formation of actin rings. The inhibition of integrin-mediated actin ring formation by linarin and acacetin entailed the disruption of TRAF6-c-Src-PI3K signaling of bone-resorbing osteoclasts. The functional inhibition of c-Src was involved in the loss of F-actin-enriched podosome core protein cortactin-mediated actin assembly due to linarin and acacetin.ConclusionThese observations demonstrate that CSE, linarin and acacetin were effective in retarding osteoclast function of focal adhesion to bone matrix and active bone resorption via inhibition of diffuse cloud-associated αvβ3 integrin and core-linked CD44.  相似文献   

19.
The mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase (ERK) and p38, can both contribute to the activation of cytosolic phospholipase A2 (cPLA2). We have investigated the hypothesis that ERK and p38 together or independent of one another play roles in the regulation of cPLA2 in macrophages responding to the oral bacterium Prevotella intermedia or zymosan. Stimulation with bacteria or zymosan beads caused arachidonate release and enhanced in vitro cPLA2 activity of cell lysate by 1.5- and 1.7-fold, respectively, as well as activation of ERK and p38. The specific inhibitor of MAP kinase kinase, PD 98059, and the inhibitor of p38, SB 203580, both partially inhibited cPLA2 activation and arachidonate release induced by bacteria and zymosan. Together, the two inhibitors had additive effects and completely blocked cPLA2 activation and arachidonate release. The present results demonstrate that ERK and p38 both have important roles in the regulation of cPLA2 and together account for its activation in P. intermedia and zymosan-stimulated mouse macrophages.  相似文献   

20.
Osteoclasts are multinucleated cells that play a crucial role in bone resorption, and are formed by the fusion of mononuclear osteoclasts derived from osteoclast precursors of the macrophage lineage. Compounds that specifically target functional osteoclasts would be ideal candidates for anti-resorptive agents for clinical applications. In the present study, we investigated the effects of luteolin, a flavonoid, on the regulation of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, functions and signaling pathway. Addition of luteolin to a coculture system of mouse bone marrow cells and ST2 cells in the presence of 10−8 M 1α,25(OH)2D3 caused significant inhibition of osteoclastogenesis. Luteolin had no effects on the 1α,25(OH)2D3-induced expressions of RANKL, osteoprotegerin and macrophage colony-stimulating factor mRNAs. Next, we examined the direct effects of luteolin on osteoclast precursors using bone marrow macrophages and RAW264.7 cells. Luteolin completely inhibited RANKL-induced osteoclast formation. Moreover, luteolin inhibited the bone resorption by mature osteoclasts accompanied by the disruption of their actin rings, and these effects were reversely induced by the disruption of the actin rings in mature osteoclasts. Finally, we found that luteolin inhibited RANKL-induced osteoclastogenesis through the suppression of ATF2, downstream of p38 MAPK and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) expression, respectively. Taken together, the present results indicate that naturally occurring luteolin has inhibitory activities toward both osteoclast differentiation and functions through inhibition of RANKL-induced signaling pathway as well as actin ring disruption, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号