首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Changes in both the environment and environmental research have led to the development of new protocols and approaches. These new approaches consider both the effects of changes in the global environment on living organisms (i.e. the responses of ecosystems to environmental processes) and the feedback responses of these organisms and ecosystems (i.e. the effects of living organisms on the environment). The present paper focuses on pelagic food webs in aquatic ecosystems. We examine three major effects of global environmental changes on aquatic organisms: (i) the release of pollutants and biological agents in lakes and nearshore marine waters; (ii) the loss of biodiversity and the collapse of commercially exploited resources that were heretofore renewable. We develop detailed examples of the effects of human activities on marine organisms (i.e. the effects of nutrient supply on the structure of pelagic food webs in marine systems. Finally, we examine (iii) the food-web-controlled exchanges of CO2 between the atmosphere and the ocean, as a feedback effect of pelagic ecosystems on the global environment with respect to the ongoing climate change.  相似文献   

2.
The Daisyworld model demonstrates that self-regulation of the global environment can emerge from competition amongst types of life altering their local environment in different ways. Robertson & Robinson (1998. J. theor. Biol.195, 129-134) presented what they describe as a "Darwinian Daisyworld" in which the ability of organisms to adapt their internal physiology in response to environmental change undermines their ability to regulate their environment. They assume that there are no bounds on the environmental conditions that organisms can adapt to and that equal growth rates can potentially be achieved under any conditions. If adaptation could respond sufficiently rapidly to changes in the environment, this would eliminate any need for the environment to be regulated in the first place, because all possible states of the environment would be equally tolerable to life. However, the thermodynamics, chemistry and structure of living organisms set bounds on the range of environmental conditions that can be adapted to. As these bounds are approached, environmental conditions limit growth rate, and adaptations necessary for survival can also cost energy. Here we take account of such constraints and find that environmental regulation is recovered in the Daisyworld model. Hence, we suggest that constraints are an important part of a self-regulating planetary system.  相似文献   

3.
Parasites are attracting increasing interest from parasite ecologists as potential indicators of environmental quality due to the variety of ways in which they respond to anthropogenic pollution. In environmental impact studies certain organisms provide valuable information about the chemical state of their environment not through their presence or absence but instead through their ability to concentrate environmental toxins within their tissues. Free living invertebrates, notably bivalve molluscs, are commonly employed in this role as `sentinel organisms' to monitor the concentrations of bioavailable metals in aquatic ecosystems. Also certain parasites, particularly intestinal acanthocephalans of fish, can accumulate heavy metals to concentrations orders of magnitude higher than those in the host tissues or the environment. The comparison of metal accumulation capacities between acanthocephalans and established free living sentinel organisms revealed significantly higher concentrations of several elements in Acanthocephalus lucii (Müller) than in the Zebra mussel Dreissena polymorpha (Pallas) which is a commonly used bioindicating organism in Europe. In contrast to the high heavy metal concentrations recorded in adult acanthocephalans, the larval stages in their respective crustacean intermediate hosts show little tendency to accumulate metals. A number of experimental studies demonstrate a clear time dependent accumulation of lead for acanthocephalans in their final hosts. These investigations provide evidence that the extremely high metal concentrations in intestinal acanthocephalans of fish are not the result of a slow process of accumulation but instead a relatively rapid uptake to a steady-state level. Thus, metal concentrations in adult acanthocephalans respond rapidly to changes in environmental exposure of their hosts. The value of parasites for environmental monitoring will be discussed in detail in the present article.  相似文献   

4.
The regular relationships between metabolic energy and body mass M of unicellular organisms, poikilotherms and homeotherms were well known as general equations. The metabolic energy rate and the life span are proportional to M(0.75) and to M(0.25), respectively. As a result, the product of the metabolic energy rate and the life time, namely, life metabolic energy, is proportional to the mass of the living organism. The origin of the scaling rules for environmental organizing systems is as follows: (1) the scaling rules for internal energy, activation energy and free energy as a function of temperature and mass of a mole of molecules. (2) The majority of species of the living organisms have the same molecules such as polysaccharides, lipids, proteins and nucleic acids in nearly same the ratio. (3) The internal energy of reactants in living organisms is equilibrium with the internal energy of water. Then, the integrated metabolic energy over the synthesizing time depends on internal energy of water and is proportional to mass M, despite the synthesizing time of the system depending on reaction rate. The proportional constant is obtained based on the thermodynamics for fundamental living organisms such as unicellular organisms and plants. Information on the environmental organizing system is also discussed.  相似文献   

5.
The existing methods for environment quality assessment do not meet current requirements because they are based on the comparison of quantitative pollution indices with the maximum allowable concentration (MAC), which significantly reduces the reliability of results. Biological methods of ecological diagnostics become priority-oriented since they provide a qualitative assessment of the environment and are based on the study of the response of living organisms to pollution.  相似文献   

6.
Clocks, metabolism, and the epigenome   总被引:1,自引:0,他引:1  
D Feng  MA Lazar 《Molecular cell》2012,47(2):158-167
  相似文献   

7.
As a consequence of both increasing population and industrialization in agro-economic sector, Pakistan has inevitably been confronted by multicomplex environmental challenges. Owing in part to poor regulatory framework, pollution due to persistent organic pollutants (POPs) has caused serious problems throughout the country. Resultantly, extensive use of POPs is causing vigorous deterioration of environment and human health. The current study addresses: (1) the general information on associated ecological effects and toxicity assessment by meta-analysis for local fauna and flora (2) their respective occurrence in living organisms; and (3) sources and distribution patterns of various POPs classes in environmental compartments of Pakistan. Based on the study, it can be concluded that the environment of Pakistan is highly contaminated with organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), and polychlorinated naphthalenes (PCNs), which is further supported with the meta-analysis. Nevertheless, unavailability of environmental quality standards and food safety for POPs render it a forthcoming challenge of multicompartment toxicity exposure. Therefore, strategies must be planned for risk assessment of biologically active POPs, while the POP waste inventory should be elevated, along with the necessary measures to promote appropriate handling and treatment of POP as a matter of prime importance.  相似文献   

8.
生物自起源开始就与其他生物建立共生体系、营共生生活、共同发挥生理生态作用,并一直协同进化至今。微生物通过与其他生物的共生,在人类健康与发展、动物健康与生长发育、植物健康与生长发育、土壤健康与土壤肥力、环境与食品安全、生物多样性保持与生态平衡、生物的遗传与进化等方面发挥众多生理生态作用。共生微生物通过直接合成激素和抗生素等次生代谢物质、调控植物相关基因表达和调节其他生物的群落结构等作用机制来发挥其功能,在医药与健康、农林牧渔业可持续生产与发展、食品加工与储藏、生态环保与生物多样性保护等方面具有十分广阔的应用前景。  相似文献   

9.
Motor vehicles are now equipped with exhaust gas catalytic converters containing rare metals, such as palladium (Pd), platinum and rhodium, as catalytic active materials, leading to significantly increased emission of these metals. Compared with platinum and rhodium, low concentrations of Pd have been shown to have more serious effects on cells and organisms. In the present study, uptake of Pd by barley and behaviour of Pd nanoparticles in nutrient solutions used to grow plants were observed in order to develop a model of Pd exposure of plant systems. Pd determination was performed using a selective separation and pre-concentration procedure, which was further developed for this study, and coupled to graphite furnace atomic absorption spectrometry. The results show that uptake of Pd depends on Pd particle diameter. Compared to other toxic metals, like mercury, Pd causes stress effects in leaves at lower concentrations in nutrient solutions. Furthermore, Pd particles are dissolved at different rates, depending on size, in the nutrient solution during plant growth.  相似文献   

10.
Respiratory allergic diseases appear to be increasingin both prevalence and severity in most countries, andsubjects living in urban and industrialized areas aremore likely to have respiratory allergic symptoms thanthose living in rural areas. This increase has beenlinked, among various factors, to air pollution and tothe westernized lifestyle. In the outdoor environment,the most important air pollutants are sulphur dioxide,nitrogen dioxide, ozone and particulate matter.Particulate diesel exhaust emissions, besides actingas irritant, are thought to modulate the immuneresponse, with an adjuvant activity on IgE synthesis,thereby facilitating allergic sensitization inpredisposed subjects. In other words, atopic statecan be upregulated by environmental influences, andsome subjects develop atopic disease in response tothese environmental factors when they are inhaled incombination with aeroallergens. Moreover, airpollutants produce greater responses in asthmaticsubjects. Since airborne pollen allergens and airpollutants are often increased contemporaneously, anenhanced IgE-mediated response to aeroallergens andenhanced airway inflammation could account for theincreasing frequency of allergic respiratory diseases,in particular those induced by pollen allergens, inurban areas.  相似文献   

11.
Phenolics are often produced as wastes by several industrial and agricultural activities. Many of these compounds and their derivatives are extremely dangerous to living organisms, because they are highly toxic and thus represent a serious environmental concern.

Conventional remediation methods of phenol-polluted systems have some disadvantages due to high cost, time-consuming procedures and formation of toxic residues. Conversely, the use of oxidative catalysts, both enzymatic or inorganic, is a promising alternative technology to address the clean up of such wastes. Oxidative enzymes and inorganic compounds, both naturally occurring in soil, behave as biotic and abiotic catalysts and support the transformation of phenolic compounds. The complete mineralization of phenolic pollutants as well as the formation of polymeric products, often less toxic than their precursors, may occur.

The present paper gives a brief review of many aspects concerning the properties of biotic and abiotic catalytic agents effective in the transformation of phenolic compounds. The main mechanisms of the processes as well as their feasibility for catalytic practical applications will be addressed. Examples of their potentiality in the detoxification of phenol-polluted systems will be provided, as well.  相似文献   

12.
Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.  相似文献   

13.
This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases.  相似文献   

14.
There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust.  相似文献   

15.
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.  相似文献   

16.
In natural predator–prey interactions, chemical communication is one of the most advantageous strategies for prey organisms because they can anticipate possible harm by means of phenotypic changes. This study compares the changes in the behaviour of four freshwater zooplankton species in the presence and absence of infochemicals from the same predator. The studied organisms are two copepods and two cladocerans living in highly variable freshwater environments. The analysis is focused on two predator defensive behaviours: a pre-encounter and a post-encounter response. First, we analysed the diel vertical migration (DVM) of the organisms inside 150?cm long transparent plastic tubes. Second, we used a novel hydraulic apparatus to quantify their ability to escape from a potential predator. The results revealed that the species have different behavioural patterns in the absence of infochemical. The differences were mainly in the way DVM developed and reflect their life histories and adaptive strategies relative to their natural environment. When faced with kairomones, the escape ability of the organisms was enhanced in all cases and DVM changed, although not always in agreement with the expected patterns. The interaction between each species and the multiple environmental components is discussed.  相似文献   

17.
李峰  丁长青 《动物学杂志》2006,41(2):128-134
持久性有机污染物(POPs)是高残留物质,进入生物体后会长期存留并产生危害。近年来,有关生物体中POPs的研究已成为环境化学、生态毒理学研究的热点之一。本文概述了持久性有机污染物(POPs)的主要类型、生态特征、来源和污染效应。介绍了POPs在鸟类体内富集的特点及其对鸟类的危害;分析了以鸟类作为环境监测指示生物时应注意的问题;对POPs的防治以及利用鹭类等水鸟监测环境污染的方法提出了建议。  相似文献   

18.

Background

Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment.

Methodologies/Principal Findings

To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny.

Conclusions

Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.  相似文献   

19.
Cells are protected by multidrug resistance transporters, which remove potentially harmful chemicals entering the cells from the environment or originating endogenously from the cellular metabolism. Multidrug resistance transporters have not been investigated so far in marine eukaryotic algae like diatoms. We investigated the uptake of a calcium-sensitive dye, Fura 2 acetoxymethylester (AM), by the marine diatom Thalassiosira rotula in the presence and absence of substances known to inhibit multidrug resistance transporters (ATP-binding cassette transporters, ABC). Three inhibitors known to block transporters in living organisms were tested in the marine diatom T. rotula. We applied verapamil, which blocks multidrug resistance P-glycoprotein (MDR1), probenecid as an inhibitor of organic anion transport and the specific inhibitor of multidrug resistance-associated protein (MRP), MK571, obtaining positive results with the highly specific MK571. This leads to the assumption that the cells of T. rotula possess MRP transporters. Marine diatom cells can now be loaded by incubation with a calcium-sensitive dye, which facilitates measurements of cellular calcium signals without using methods risking injury of the cell membrane. This opens an avenue for investigation on diatom calcium signalling and perhaps how they process environmental signals.  相似文献   

20.
The platinum group metals (PGM) Pt, Pd and Rh are emitted into the environment mainly by catalytic exhaust gas converters of cars. As PGM accumulate in sediments of aquatic ecosystems, the study was focused on the uptake of the noble metals by European eels, Anguilla anguilla infected with the acanthocephalan Paratenuisentis ambiguus. Eels were exposed to ground catalytic converter material for six weeks. After exposure Pt and Pd were detected in the liver and kidney of the eels and in the parasites. Palladium was also found in fish muscle and intestine. No Rh uptake by the eel tissues and the parasites occurred. Paratenuisentis ambiguus contained the highest levels of both metals with 40 times higher Pt concentrations and four times higher Pd concentrations than the liver of its host. Due to its accumulation capacity for PGM, P. ambiguus can be applied as a sensitive accumulation indicator in field studies to assess the degree of environmental PGM contamination in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号