首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Eight natural prenylated flavones, previously isolated from Artocarpus elasticus, were evaluated for their effect on the mitogenic response of human lymphocytes to PHA. They all exhibited a dose-dependent suppression effect. An interesting relationship was observed between their antiproliferative activity and their chemical structure. Indeed, the most potent flavones possessed a 3,3-dymethylallyl group (prenyl) at C-8, such as artelastin, which exhibited the highest antiproliferative activity. Studies of the mechanism underlying its effect revealed that artelastin had an irreversible inhibitory effect on the PHA-induced lymphocyte proliferation and could affect the course of the ongoing mitogenic response either at the initial induction phase or at the late phase of proliferation. This prenylated flavone was also shown to be a potent inhibitor of both T- and B-lymphocyte mitogen induced proliferation although B-mitogenic response was the more sensitive one. Artelastin did not affect either the basal levels of the early marker of activation CD69 on non-stimulated splenocytes or its expression on ConA- or LPS-stimulated splenocytes. However, it decreased the production of IFN-gamma, IL-2, IL-4 and IL-10 in ConA-stimulated splenocytes. Furthermore, artelastin had no effect on apoptosis of splenocytes.  相似文献   

2.
3.
There has been a strong interest in searching for natural therapies for osteoporosis. Genistein, an isoflavone abundant in soy, and icariin, a prenylated flavonol glycoside isolated from Epimedium Herb, have both been identified to exert beneficial effects in preventing postmenopausal bone loss. However, the relative potency in osteogenesis between the individual phytoestrogen flavonoids remains unknown. The present study compared ability of genistein and icariin in enhancing differentiation and mineralization of cultured rat calvarial osteoblasts in vitro. Dose-dependent studies in osteoblast differentiation measuring alkaline phosphatase (ALP) activity revealed optimal concentrations of genistein and icarrin for stimulating osteogenesis to be both at 10(-5) M. Time course studies comparing the two compounds both at 10(-5) M demonstrated that icariin treatment always produced higher ALP activity, more and larger areas of CFU-F(ALP) colonies and mineralized nodules, more osteocalcin secretion, and calcium deposition, and a higher level of mRNA expression of osteogenesis-related genes COL1α2, BMP-2, OSX, and RUNX-2. However, they inhibited the proliferation of osteoblasts to a similar degree. In conclusion, although future in vivo studies are required to investigate whether icariin is more efficient in improving bone mass and/or preventing bone loss, our in vitro studies have demonstrated that icariin has a stronger osteogenic activity than genistein. In addition, while the prenyl group on C-8 of icariin could be the active group that takes part in osteoblastic differentiation and explains its greater potency in osteogenesis, mechanisms of action, and reasons for the relative potency of icariin versus genistein need to be further studied.  相似文献   

4.
Han QB  Yang NY  Tian HL  Qiao CF  Song JZ  Chang DC  Chen SL  Luo KQ  Xu HX 《Phytochemistry》2008,69(11):2187-2192
Eight prenylated xanthones, bannaxanthones A-H (1-8), together with seven known compounds, were isolated from the acetone extract of the twigs of Garcinia xipshuanbannaensis. Their structures were elucidated by spectroscopic data interpretation. The cytotoxic activities of these compounds were evaluated using the MTT method. The results showed that xanthones with an unsaturated prenyl group had stronger cytotoxic activity against cancer cells, whereas those with hydroxylated prenyl groups had none.  相似文献   

5.
Increasingly natural products particularly flavonoids are being explored for their therapeutic potentials in reducing bone loss and maintaining bone health. This study has reviewed previous studies on the two better known flavonoids, genistein and icariin, their structures, functions, action mechanisms, relative potency, and potential application in regulating bone remodeling and preventing bone loss. Genistein, an isoflavone abundant in soy, has dual functions on bone cells, able to inhibit bone resorption activity of osteoclasts and stimulate osteogenic differentiation and maturation of bone marrow stromal progenitor cells (BMSCs) and osteoblasts. Genistein is an estrogen receptor (ER)‐selective binding phytoestrogen, with a greater affinity to ERβ. Genistein inhibits tyrosine kinases and inhibits DNA topoisomerases I and II, and may act as an antioxidant. Genistein enhances osteoblastic differentiation and maturation by activation of ER, p38MAPK‐Runx2, and NO/cGMP pathways, and it inhibits osteoclast formation and bone resorption through inducing osteoclastogenic inhibitor osteoprotegerin (OPG) and blocking NF‐κB signaling. Icariin, a prenylated flavonol glycoside isolated from Epimedium herb, stimulates osteogenic differentiation of BMSCs and inhibits bone resorption activity of osteoclasts. Icariin, whose metabolites include icariside I, icariside II, icaritin, and desmethylicaritin, has no estrogenic activity. However, icariin is more potent than genistein in promoting osteogenic differentiation and maturation of osteoblasts. The existence of a prenyl group on C‐8 of icariin molecular structure has been suggested to be the reason why icariin is more potent than genistein in osteogenic activity. Thus, the prenylflavonoids may represent a class of flavonoids with a higher osteogenic activity. J. Cell. Physiol. 228: 513–521, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The G protein betagamma complex regulates a wide range of effectors, including the phospholipase Cbeta isozymes (PLCbetas). Prenyl modification of the gamma subunit is necessary for this activity. Evidence presented here supports a direct interaction between the G protein gamma subunit prenyl group and PLCbeta isozymes. A geranylgeranylated peptide corresponding to the C-terminal region of the gamma subunit type, gamma2, strongly inhibits stimulation of PLCbeta2 and PLCbeta3 activity by the betagamma complex. This effect is specific because the same peptide has no effect on stimulation of PLCbeta by an alpha subunit type, alphaq. Prenylation of the gamma peptide is required for its inhibitory effect. When interaction of prenylated gamma subunit peptide to fluorophore-tagged PLCbeta2 was examined by fluorescence spectroscopy, prenylated but not unprenylated peptide increased PLCbeta2 fluorescence emission energy, indicating direct binding of the prenyl moiety to PLCbeta. In addition, fluorescence resonance energy transfer was detected between fluorophore tagged PLCbeta and wild type betagamma complex but not an unprenylated mutant betagamma complex. We conclude that a major function of the gamma subunit prenyl group is to facilitate direct protein-protein interaction between the betagamma complex and an effector, phospholipase Cbeta.  相似文献   

7.
A number of phototransducing proteins in vertebrate photoreceptors contain a carboxyl terminal -CXXX motif (where C = cysteine and X = any amino acid), known to be a signal sequence for their post-translational prenylation and carboxyl methylation. To study the roles of these modifications in the visual excitation process, we have utilized an intravitreal injection method to radiolabel the prenylated proteins of rat retinas in vivo. We showed that two of the major prenylated polypeptides in the rod outer segments are the PDE alpha and PDE beta subunits of cyclic GMP phosphodiesterase PDE alpha and PDE beta subunits of cyclic GMP phosphodiesterase (PDE). By chromatographic analyses of the amino acid constituents generated by exhaustive proteolysis of PDE alpha and PDE beta, we further demonstrated that they are differentially prenylated by farnesylation and geranylgeranylation, respectively. While a number of proteins ending with the -CXXX sequence have already been reported to possess either a farnesyl or a geranylgeranyl group, PDE is the first enzyme shown to be modified by both types of prenyl groups. The prenyl modification of PDE most likely plays a major role in membrane attachment and in correctly positioning the PDE molecule for phototransduction.  相似文献   

8.
Six prenyl (=3-methylbut-2-en-1-yl) chalcones (=1,3-diphenylprop-2-en-1-ones), 2-7, and one natural non-prenylated chalcone, 1, have been synthesized and evaluated for their in vitro growth-inhibitory activity against three human tumor cell lines. A pronounced dose-dependent growth-inhibitory effect was observed for all prenylated derivatives, except for 7. The chalcone possessing one prenyloxy group at C(2'), i.e., 2, was the most active derivative against the three human tumor cell lines (5.9相似文献   

9.
Proteins containing C-terminal "CAAX" sequence motifs undergo three sequential post-translational processing steps: modification of the cysteine with either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenyl lipid, proteolysis of the C-terminal -AAX tripeptide, and methylation of the carboxyl group of the now C-terminal prenylcysteine. A putative prenyl protein protease in yeast, designated Rce1p, was recently identified. In this study, a portion of a putative human homologue of RCE1 (hRCE1) was identified in a human expressed sequence tag data base, and the corresponding cDNA was cloned. Expression of hRCE1 was detected in all tissues examined. Both yeast and human RCE1 proteins were produced in Sf9 insect cells by infection with a recombinant baculovirus; membrane preparations derived from the infected Sf9 cells exhibited a high level of prenyl protease activity. Recombinant hRCE1 so produced recognized both farnesylated and geranylgeranylated proteins as substrates, including farnesyl-Ki-Ras, farnesyl-N-Ras, farnesyl-Ha-Ras, and the farnesylated heterotrimeric G protein Ggamma1 subunit, as well as geranylgeranyl-Ki-Ras and geranylgeranyl-Rap1b. The protease activity of hRCE1 activity was specific for prenylated proteins, because unprenylated peptides did not compete for enzyme activity. hRCE1 activity was also exquisitely sensitive to a prenyl peptide analogue that had been previously described as a potent inhibitor of the prenyl protease activity in mammalian tissues. These data indicate that both the yeast and the human RCE1 gene products are bona fide prenyl protein proteases and suggest that they play a major role in the processing of CAAX-type prenylated proteins.  相似文献   

10.
A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.  相似文献   

11.
The synthesis, structure elucidation, and antitumor activity of 11 xanthones are reported, being the compounds 3, 4, 6-8, and 9 described for the first time. Xanthones 1 and 2 were used as building blocks to obtain the prenylated derivatives 3-8. Prenylation was carried out using prenyl bromide in alkaline medium. Dihydropyranoxanthones 9-11 were obtained from compounds 4 and 5 by an oxidative ring closure. The structure of the compounds was established by IR, UV, MS, and NMR ((1)H, (13)C, COSY, HSQC, and HMBC) techniques and for compounds 4, 6, and 11 the structure was confirmed by X-ray crystallographic analysis. The effect of the 11 xanthones on the in vitro growth of four human tumor cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), SF-268 (central nervous system cancer), and UACC-62 (melanoma) is also described.  相似文献   

12.
Six prenyl (=3‐methylbut‐2‐en‐1‐yl) chalcones (=1,3‐diphenylprop‐2‐en‐1‐ones), 2 – 7 , and one natural non‐prenylated chalcone, 1 , have been synthesized and evaluated for their in vitro growth‐inhibitory activity against three human tumor cell lines. A pronounced dose‐dependent growth‐inhibitory effect was observed for all prenylated derivatives, except for 7 . The chalcone possessing one prenyloxy group at C(2′), i.e., 2 , was the most active derivative against the three human tumor cell lines (5.9<GI50<7.7 μM ). The majority of compounds caused an increase in percentage of apoptotic cells and/or they interfered with cell cycle distribution in the MCF‐7 cell line.  相似文献   

13.
Prenylated aromatics (PAs) are an important class of natural products with valuable pharmaceutical applications. To address current limitations of their sourcing from plants, here, we present a microbial platform for the in vivo synthesis of PAs based on the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. As proof of concept, we targeted the prenylation of phenolic/phenolcarboxylic acids, including orsellinic (OSA), divarinolic (DVA), and olivetolic (OLA) acids, whose prenylated products have important biopharmaceutical applications. Although the ability of wild-type NphB to catalyze the prenylation reaction with each acid was validated by in vitro characterization, improvement of product titers in vivo required protein modeling and rational design to engineer NphB variants with increased activity and product selectivity. When a designed NphB variant with eightfold improved catalytic efficiency toward OSA was expressed in an Escherichia coli host engineered to generate geranyl pyrophosphate at high flux through the mevalonate pathway, we observed up to 300 mg/L prenylated products by exogenously supplying OSA. The improved properties of engineered NphB were also utilized to demonstrate the diversification of this in vivo platform by using both different aromatic acceptors and different prenyl donors to generate various PA compounds, including medicinally important compounds such as cannabigerovarinic, cannabigerolic, and grifolic acids.  相似文献   

14.
Interaction of p50 Rho GTPase-activating protein (p50RhoGAP) with Rho family small GTPases was investigated in a yeast two-hybrid system, by radioactive GAP assay, and in a Rac-regulated enzymatic reaction, through superoxide production by the phagocytic NADPH oxidase. The yeast two-hybrid system revealed an interaction between the C-terminal GAP domain and the N-terminal part of p50RhoGAP. The first 48 amino acids play a special role both in the stabilization of the intramolecular interaction and in recognition of the prenyl tail of small GTPases. The GAP assay and the NADPH oxidase activity indicate that the GTPase-activating effect of full-length p50RhoGAP is lower on non-prenylated than on prenylated small GTPase. Removal of amino acids 1-48 and 169-197 of p50RhoGAP increases the GAP effect on non-prenylated Rac, whereas prenylated Rac reacts equally well with the full-length and the truncated proteins. We suggest that p50RhoGAP is in an autoinhibited conformation stabilized by the stretches 1-48 and 169-197 and the prenyl group of the small GTPase plays a role in releasing this intramolecular restraint.  相似文献   

15.
为了探索力生长因子羧基端E结构域的后24个氨基酸组成的短肽(MGF-Ct24E)对成骨细胞生物学活性的影响,通过组织块培养法获得大鼠原代成骨细胞,采用MTT法和流式细胞仪检测细胞的增殖及细胞周期分布情况,基因芯片技术检测细胞基因表达谱,并用定量PCR实验验证芯片检测结果。结果显示MGF-Ct24E组的细胞增殖活性明显高于对照组,且在培养第一天促增殖效果最为显著。细胞周期结果显示MGF-Ct24E显著提高了S期和G2/M期的细胞所占比例。基因芯片检测发现差异表达基因共1397个,其中上调922,下调475,且差异表达的基因主要是关于细胞的增殖分化调节,生长因子结合和活性调节等方面。MGF-Ct24E对成骨细胞的这种增殖分化调控提示MGF-Ct24E在促进骨修复方面有着潜在的应用价值。  相似文献   

16.
Oxidative damage is thought to play a critical role in cardiovascular and other chronic diseases. This has led to considerable interest in the antioxidant activity of dietary compounds. Flavonoids have received the most attention and much is known about the structural requirements for antioxidant activity. However, little is known about the antioxidant activity of other plant derived phenolic compounds such as the xanthones. We have previously shown that the prenylated xanthone, mangostin, can inhibit the oxidation of low density lipoprotein. In order to examine the effects of structure modification on antioxidant activity of this class of compound we have prepared a number of derivatives of mangostin and tested antioxidant activity in an isolated LDL and plasma assay. The results of this study show that structural modification of mangostin can have a profound effect on antioxidant activity. Derivatisation of the C-3 and C-6 hydroxyl groups with either methyl, acetate, propane diol or nitrile substantially reduces antioxidant activity. In contrast, derivatisation of C-3 and C-6 with aminoethyl derivatives enhanced antioxidant activity, which may be related to changes in solubility. Cyclisation of the prenyl chains had little influence on antioxidant activity.  相似文献   

17.
Oxidative damage is thought to play a critical role in cardiovascular and other chronic diseases. This has led to considerable interest in the antioxidant activity of dietary compounds. Flavonoids have received the most attention and much is known about the structural requirements for antioxidant activity. However, little is known about the antioxidant activity of other plant derived phenolic compounds such as the xanthones. We have previously shown that the prenylated xanthone, mangostin, can inhibit the oxidation of low density lipoprotein. In order to examine the effects of structure modification on antioxidant activity of this class of compound we have prepared a number of derivatives of mangostin and tested antioxidant activity in an isolated LDL and plasma assay. The results of this study show that structural modification of mangostin can have a profound effect on antioxidant activity. Derivatisation of the C-3 and C-6 hydroxyl groups with either methyl, acetate, propane diol or nitrile substantially reduces antioxidant activity. In contrast, derivatisation of C-3 and C-6 with aminoethyl derivatives enhanced antioxidant activity, which may be related to changes in solubility. Cyclisation of the prenyl chains had little influence on antioxidant activity.  相似文献   

18.
Dimethylallyl diphosphate: naringenin 8-dimethylallyltransferase (EC 2.5.1) was characterized. The enzyme was enantiospecific for (-)-(2S)-naringenin and utilized 3,3-dimethylallyl diphosphate as sole prenyl donor. It required Mg2+ (optimum concentration, 10 mM), and has an optimum pH of 9-10. The apparent Km values for 3,3-dimethylallyl diphosphate and naringenin were 120 and 36 microM, respectively. The microsomal fraction prenylated several other flavanones at the C-8 position less effectively as compared with naringenin. Interestingly, when 2'-hydroxynaringenin was used as a prenyl acceptor, the 8-lavandulyl (sophoraflavanone G) and the 6-dimethylallyl derivatives were formed, together with the 8-dimethylallyl derivative, leachianone G. These results suggest that the 2'-hydroxy group of naringenin plays an important role for the formation of a lavandulyl group.  相似文献   

19.
Osteoblastic proliferative activity of Epimedium brevicornum Maxim.   总被引:19,自引:0,他引:19  
The effect of the extracts of Epimedium brevicornum Maxim. was investigated on proliferative activity in vitro. The osteoblast-like UMR106 cells was employed as an osteoblast model. The EtOH extract and the n-butanol fraction from the crude extract were found to show proliferation stimulating activity. Three flavonoid compounds (icariin, epimedin B and epimedin C) were isolated from this fraction by activity-guided assay, and the effects on cell proliferation were studied. Icariin produced the most significant promoting effect on the proliferation in osteoblast-like UMR106 cells. The results suggested that E. brevicornum Maxim. extracts might have potential activity against osteoporosis, and flavonoids such as icariin might be the active constituents stimulating osteoblasts.  相似文献   

20.
目的:探讨铅锌联合染毒对乳鼠颅骨成骨细胞增殖分化的影响。方法:分离并培养原代成骨细胞,加入不同浓度铅、锌培养48h,检测其对成骨细胞增殖的作用;用碱性磷酸酶试剂盒检测ALP活力。结果:在染铅48h后,当铅浓度≥10μmol/L时,细胞增殖功能下降(P<0.05);加锌干预48h后,铅+锌组细胞增殖功能均高于各自单独染铅组,其中铅(1μmol/L、10μmol/L)+锌(50μmol/L)组、铅(10)+锌(100)组与对照组间的差异具有统计学意义(P<0.05)。铅干预48h后,100μmol/L铅组的ALP活力显著下(P<0.05),给予锌干预的铅锌联合染毒组,各组ALP活力均有增加,其中铅(1μmol/L、10μmol/L)+锌(50μmol/L)组ALP活力均高于对照组,而铅(100μmol/L)+锌(50μmol/L)组ALP活力低于对照组,差异均有统计学意义(P<0.05)。结论:铅对成骨细胞有毒性作用,影响其增殖和分化功能;50μmol/L锌在一定程度上可以拮抗铅对成骨细胞增殖和分化功能的损伤,且对ALP活力的作用更显著,为铅中毒骨病的防治提供一定的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号