首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work showed that in the adult sturgeon an intrapericardial, nonmyocardial segment is interposed between the conus arteriosus of the heart and the ventral aorta. The present report illustrates the ontogeny of this intermediate segment in Acipenser naccarii. The sample studied consisted of 178 alevins between 1 and 24 days posthatching. They were examined using light and electron microscopy. Our observations indicate that the entire cardiac outflow tract displays a myocardial character during early development. Between the fourth and sixth days posthatching, the distal portion of the cardiac outflow tract undergoes a phenotypical transition, from a myocardial to a smooth muscle-like phenotype. The length of this region with regard to the whole outflow tract increases only moderately during subsequent developmental stages, becoming more and more cellularized. The cells soon organize into a pattern that resembles that of the arterial wall. Elastin appears at this site by the seventh day posthatching. Therefore, two distinct components, proximal and distal, can be recognized from the fourth day posthatching in the cardiac outflow tract of A. naccarii. The proximal component is the conus arteriosus, characterized by its myocardial nature and the presence of endocardial cushions. The distal component transforms into the intrapericardial, nonmyocardial segment mentioned above, which is unequivocally of cardiac origin. We propose to designate this segment the "bulbus arteriosus" because it is morphogenetically equivalent to the bulbus arteriosus of teleosts. The present findings, together with data from the literature, point to the possibility that cells from the cardiac neural crest are involved in the phenotypical transition that takes place at the distal portion of the cardiac outflow tract, resulting in the appearance of the bulbus arteriosus. Moreover, they suggest that the cardiac outflow tract came to be formed by a bulbus arteriosus and a conus arteriosus from an early period of the vertebrate evolutionary story. Finally, we hypothesize that the embryonic truncus of birds and mammals is homologous to the bulbus arteriosus of fish.  相似文献   

2.
We report a morphologic study of the heart ventricle and outflow tract of the African lungfish Protopterus dolloi. The ventricle is saccular and appears attached to the anterior pericardial wall by a thick tendon. An incomplete septum divides the ventricle into two chambers. Both the free ventricular wall and the incomplete ventricular septum are entirely trabeculated. Only a thin rim of myocardium separates the trabecular system from the subepicardial space. The outflow tract consists of proximal, middle, and distal portions, separated by two flexures, proximal and distal. The proximal outflow tract portion is endowed with a layer of compact, well-vascularized myocardium. This portion is homologous to the conus arteriosus observed in the heart of most vertebrates. The middle and distal outflow tract portions are arterial-like, thus being homologous to the bulbus arteriosus. However, the separation between the muscular and arterial portions of the outflow tract is not complete in the lungfish. A thin layer of myocardium covers the arterial tissue, and a thin layer of elastic tissue underlies the conus myocardium. Two unequal ridges composed of loose connective tissue, the spiral and bulbar folds, run the length of the outflow tract. They form an incomplete division of the outflow tract, but fuse at the distal end. The two folds are covered by endocardium and contain collagen, elastin, and fibroblast-like cells. They appear to be homologous to the dextro-dorsal and sinistro-ventral ridges observed during the development of the avian and mammalian heart. Two to three rows of vestigial arterial-like valves appear in the dorsal and ventral aspects of the conus. These valves are unlikely to have a functional role. The possible functional significance of the "gubernaculum cordis," the thick tendon extending between the anterior ventricular surface and the pericardium, is discussed.  相似文献   

3.
The outflow tract of the fish heart is the segment interposed between the ventricle and the ventral aorta. It holds the valves that prevent blood backflow from the gill vasculature to the ventricle. The anatomical composition, histological structure and evolutionary changes in the fish cardiac outflow tract have been under discussion for nearly two centuries and are still subject to debate. This paper offers a brief historical review of the main conceptions about the cardiac outflow tract components of chondrichthyans (cartilaginous fish) and actinopterygians (ray‐finned fish) which have been put forward since the beginning of the nineteenth century up to the current day. We focus on the evolutionary origin of the outflow tract components and the changes to which they have been subject in the major extant groups of chondrichthyans and actinopterygians. In addition, an attempt is made to infer the primitive anatomical design of the heart of the gnathostomes (jawed vertebrates). Finally, several areas of further investigation are suggested. Recent work on fish heart morphology has shown that the cardiac outflow tract of chondrichthyans does not consist exclusively of the myocardial conus arteriosus as classically thought. A conus arteriosus and a bulbus arteriosus, devoid of myocardium and mainly composed of elastin and smooth muscle, are usually present in cartilaginous and ray‐finned fish. This is consistent with the suggestion that both components coexisted from the onset of the gnathostome radiation. There is evidence that the conus arteriosus appeared in the agnathans. By contrast, the evolutionary origin of the bulbus is still unclear. It is almost certain that in all fish, both the conus and bulbus develop from the embryonic second heart field. We suggest herein that the primitive anatomical heart of the jawed vertebrates consisted of a sinus venosus containing the pacemaker tissue, an atrium possessing trabeculated myocardium, an atrioventricular region with compact myocardium which supported the atrioventricular valves, a ventricle composed of mixed myocardium, and an outflow tract consisting of a conus arteriosus, with compact myocardium in its wall and valves at its luminal side, and a non‐myocardial bulbus arteriosus that connected the conus with the ventral aorta. Chondrichthyans have retained this basic anatomical design of the heart. In actinopterygians, the heart has been subject to notable changes during evolution. Among them, the following two should be highlighted: (i) a decrease in size of the conus in combination with a remarkable development of the bulbus, especially in teleosts; and (ii) loss of the myocardial compact layer of the ventricle in many teleost species.  相似文献   

4.
The unique anatomy of the double ventral aorta outflow system in the air breathing teleost Channa argus (Ophiocephalus) showing an anterior and posterior ventral aorta is described. The marked trabeculation of the ventricle and bulbus arteriosus and the arrangement of central veins are used as a basis for the hypothesis that Channa may selectively channel the well oxygenated blood draining the air breathing organs via the anterior cardinal vein to the posterior ventral aorta, which forms the systemic arterial circulation. An angiocardiographic technique was used to test this hypothesis, as well as to delineate the functional role of the heart chambers in the cardiac cycle. No reflux of contrast to the sinus venosus during atrial filling and no ventricular filling before atrial contraction were apparent, which makes the atrium the main determinant of the ventricular end-diastolic volume. Ventricular contraction left a small or no residual volume. The ventricular ejectate was initially nearly completely absorbed by the very elastic bulbus arteriosus, acting as a pressure chamber (Windkessel) stabilizing and prolonging ventral aortic blood flow. Contrast medium was not selectively passed from the anterior cardinal vein to the posterior ventral aorta. However, the diameter of this vessel and its density of contrast were greater than in the anterior aorta, suggesting a preference for a greater blood flow from the air breathing organ through the heart to the posterior aorta.  相似文献   

5.
The rate of expansion in volume of the bulbus arteriosus with increase in pressure is measured. From this it is calculated the elastic rebound of the bulbus can account for approximately 25 % of blood flow in the ventral aorta; this proportion decreases as cardiac output increases. The structure of the wall of the bulbus is shown to consist of a compact outer layer with a series of separate longitudinal elements on the inner surface. These elements are connected to the compact layer by numerous radial fibres. This structure equalizes strain in all the structural elements of the wall during large changes in volume. Evidence is discussed which shows that the bulbus arteriosus in teleosts is morphologically and biochemically distinct from the ventral aorta. The bulbus is probably of cardiac origin rather than an expansion of the posterior end of the aorta as generally supposed.  相似文献   

6.
BACKGROUND: Corrosion casting and immunohistochemical staining with anti‐alpha smooth muscle actin and anti‐CD34 was utilized to demonstrate the capillary plexus and venous system in control and malformed mouse hearts. METHODS: Outflow tract malformations (e.g., double outlet right ventricle, transposition of the great arteries, and common truncus arteriosus) were induced in progeny of pregnant mice by retinoic acid administration at day 8.5 of pregnancy. RESULTS: Although control hearts exhibited areas in which capillaries tended to be oriented in parallel arrays, the orientation of capillaries in the respective areas of malformed hearts was chaotic and disorganized. The major branch of a conal vein in control hearts runs usually from the left side of the conus to its right side at the root of the pulmonary trunk and opens to the right atrium below the right auricle; thus, it has a curved course. On the other hand, a conal vein in malformed hearts courses from the left side or from the anterior side of the conus and tends to traverse straight upwards along the dextroposed aorta or along the aortopulmonary groove with its proximal part located outside of the heart. Other cardiac veins in outflow tract malformations are positioned in the same locations as in control hearts. CONCLUSIONS: We postulate that the changed location of the conal vein and disorganized capillary plexus result from malformed morphogenesis of the outflow tract and/or a disturbed regulation of angiogenic growth factor release from the adjacent environment. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Summary The structure of the bulbus arteriosus of a wide range of teleost fish is described with particular reference to the vascularization and innervation. The adventitia of the organ consists of blood vessels and large nerve bundles in a collagen matrix. The nerve bundles contain monoamines, and fluorescence studies show small terminal bundles penetrating the muscular media; this is confirmed by electron microscopy. The media consists of an extensive elastic tissue matrix with a spiral arrangement of smooth muscle cells joined end to end by desmosomes and presumed electrotonic junctions. The muscle cells are innervated only at the adventitia/media boundary and the significance of this innervation is discussed. It is proposed that there is a correlation between the degree of vascularization and innervation and the activity of a particular species offish.  相似文献   

8.
9.
The bulbar wall has three layers. Its lining consists of squamous-columnar endothelial cells that store neutral mucopolysaccharides and are PAS-positive. They do not contain large amounts of acid phosphatase, acid mucopolysaccharides, glycogen or lipids. A morphometric analysis shows that 32% of the cell volume in Pungitius and 12% in Gasterosteus is occupied by specific granules, 100–600 nm in diameter. According to X-ray probe micro-analysis, these granules bind chromium ions, even though the endothelial cells do not contain catecholamines. Rootlets, packed with plasmalemmal vesicles, extend from the endothelial cells into the middle layer of the bulbus. Here, smooth muscle cells alternate with elastic fibres. The staining reactions of bulbar elastica are compared with those in the mammalian aorta and the ligamentum nuchae. The outer layer of the bulbus is visceral pericardium and beneath its covering mesothelial cells are numerous collagen fibres, non-myelinated nerves, occasional fibroblasts and melanocytes. Scanning electron microscopy shows that the bulbar lining is thrown into longitudinal folds, but that there are no trabeculae subdividing the lumen.
Many features of the bulbus arteriosus may be related to the low systolic pressures of teleosts and to the proximity of their heart and gills. In contrast to mammals, only a small part of the arterial system can act as a windkessel. The bulbus is thus more distensible than the mammalian aorta and must lie within the pericardial cavity so that its greater excursions can be accommodated. Perhaps because the bulbus is so distensible, it has elastic fibres rather than lamellae. This in turn may affect the organization of the smooth muscle cells which do not form "span muscles" as in some mammalian aortae. Like most cells in the bulbus, they are joined to others by desmosomes. Evidently, firm cohesion is important in highly distensible vessels.  相似文献   

10.
Planar cell polarity (PCP) is the mechanism by which cells orient themselves in the plane of an epithelium or during directed cell migration, and is regulated by a highly conserved signalling pathway. Mutations in the PCP gene Vangl2, as well as in other key components of the pathway, cause a spectrum of cardiac outflow tract defects. However, it is unclear why cells within the mesodermal heart tissue require PCP signalling. Using a new conditionally floxed allele we show that Vangl2 is required solely within the second heart field (SHF) to direct normal outflow tract lengthening, a process that is required for septation and normal alignment of the aorta and pulmonary trunk with the ventricular chambers. Analysis of a range of markers of polarised epithelial tissues showed that in the normal heart, undifferentiated SHF cells move from the dorsal pericardial wall into the distal outflow tract where they acquire an epithelial phenotype, before moving proximally where they differentiate into cardiomyocytes. Thus there is a transition zone in the distal outflow tract where SHF cells become more polarised, turn off progenitor markers and start to differentiate to cardiomyocytes. Membrane-bound Vangl2 marks the proximal extent of this transition zone and in the absence of Vangl2, the SHF-derived cells are abnormally polarised and disorganised. The consequent thickening, rather than lengthening, of the outflow wall leads to a shortened outflow tract. Premature down regulation of the SHF-progenitor marker Isl1 in the mutants, and accompanied premature differentiation to cardiomyocytes, suggests that the organisation of the cells within the transition zone is important for maintaining the undifferentiated phenotype. Thus, Vangl2-regulated polarisation and subsequent acquisition of an epithelial phenotype is essential to lengthen the tubular outflow vessel, a process that is essential for on-going cardiac morphogenesis.  相似文献   

11.
The bulbus arteriosus, 'windkessel', of several species of stenothermal and temperate teleosts has been studied by conventional light microscopy and electron microscopy. The bulbus wall is divided into an endocardium, ridges, and middle and external layers. The endocardium of all species shows moderately-dense bodies, which vary widely although the significance is not known. The endocardium in Antarctic teleosts invaginates into the ridge tissue to form solid epithelial cords that show signs of active secretion related to protective substances. Cords also form in serranidic and sparidic species, but signs of active secretion are not evident. The ridges consist of cells within a filamentous meshwork. Ridge cells appear to be smooth muscle cells that undergo a phenotypic transition from the endocardium toward the middle layer. Middle layer cells are typical smooth muscle cells surrounded by a filamentous matrix. The appearance and composition of the extracellular matrix varies widely among species, with those from the Antarctic lacking collagen and elastin fibres. The external layer is a collagenous matrix that contains fibroblasts, blood vessels and nerves. In most Antarctic teleost species this layer lacks blood vessels, but contains nerve fibres. Some of these fibres could have a sensory function to control bulbus dilatation. The external layer of Trematomus bernacchii has the appearance of a germinal centre and may be involved in the immune humoral response. The epicardium is atight epithelium that may control passage of substances with the pericardial cavity.  相似文献   

12.
Quantitative receptor autoradiographic study of 125I-atrial natriuretic peptide factor (ANF) in the heart of a teleost fish Conger conger has shown that a heterogenous distribution of 125I-ANF binding exists in the different cardiac regions. Elevated ANF binding densities (3,790 fmol/mg protein) were encountered in the innermost layer (tunica intima) of the bulbus arteriosus while lower binding levels (293-403 fmol/mg protein) were revealed in atrium and ventricle. In order to determine 125I-ANF binding characteristics (KD, Bmax) in the above cardiac sites, saturation binding assays were carried out. The results show that low 125I-ANF KD values (28.8-52.6 pM) were found in the atrium and in the bulbus arteriosus with respect to the higher KD values (373 pM) of the ventricle. The number of binding sites were respectively 632 and 1,279 fmol/mg protein for the atrium and the ventricle, while a substantially elevated Bmax of 7,235 fmol/mg protein was found for the bulbus arteriosus. These results may furnish some insights concerning ANF receptor binding activity and its putative regulatory role of different cardiac functions.  相似文献   

13.
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural crest-derived smooth muscle does not extend to the arterial pole myocardium leaving a region at the base of the aorta and pulmonary trunk that is invested by vascular smooth muscle of unknown origin. Using tissue marking and vascular smooth muscle markers, we show that the secondary heart field, in addition to providing myocardium to the cardiac outflow tract, also generates prospective smooth muscle that forms the proximal walls of the aorta and pulmonary trunk. As a result, there are two seams in the arterial pole: first, the myocardial junction with secondary heart field-derived smooth muscle; second, the secondary heart field-derived smooth muscle with the neural crest-derived smooth muscle. Both of these seams are points where aortic dissection frequently occurs in Marfan's and other syndromes.  相似文献   

14.
Cardiac neural crest cells are multipotent migratory cells that contribute to the formation of the cardiac outflow tract and pharyngeal arch arteries. Neural crest-related developmental defects account for a large proportion of congenital heart disorders. Recently, the genetic bases for some of these disorders have been elucidated, and signaling pathways required for induction, migration and differentiation of cardiac neural crest have emerged. Bone morphogenetic proteins comprise a family of secreted ligands implicated in numerous aspects of organogenesis, including heart and neural crest development. However, it has remained generally unclear whether BMP ligands act directly on neural crest or cardiac myocytes during cardiac morphogenesis, or function indirectly by activating other cell types. Studies on BMP receptor signaling during organogenesis have been hampered by the fact that receptor knockouts often lead to early embryonic lethality. We have used a Cre/loxP system for neural crest-specific deletion of the type I receptor, ALK2, in mouse embryos. Mutant mice display cardiovascular defects, including persistent truncus arteriosus, and abnormal maturation of the aortic arch reminiscent of common forms of human congenital heart disease. Migration of mutant neural crest cells to the outflow tract is impaired, and differentiation to smooth muscle around aortic arch arteries is deficient. Moreover, in Alk2 mutants, the distal outflow tract fails to express Msx1, one of the major effectors of BMP signaling. Thus, the type I BMP receptor ALK2 plays an essential cell-autonomous role in the development of the cardiac outflow tract and aortic arch derivatives.  相似文献   

15.
A large number of congenital heart defects associated with mortality in humans are those that affect the cardiac outflow tract, and this provides a strong imperative to understand its development during embryogenesis. While there is wide phylogenetic variation in adult vertebrate heart morphology, recent work has demonstrated evolutionary conservation in the early processes of cardiogenesis, including that of the outflow tract. This, along with the utility and high reproductive potential of fish species such as Danio rerio , Oryzias latipes etc. , suggests that fishes may provide ideal comparative biological models to facilitate a better understanding of this poorly understood region of the heart. In this review, the authors present the current understanding of both phylogeny and ontogeny of the cardiac outflow tract in fishes and examine how new molecular studies are informing the phylogenetic relationships and evolutionary trajectories that have been proposed. The authors also attempt to address some of the issues of nomenclature that confuse this area of research.  相似文献   

16.
It is a widely held belief that the arterial pole of the zebrafish heart is unusual among models of comparative cardiogenesis. This is based, in part, on the report that the bulbus arteriosus undergoes a striated-to-smooth muscle phenotypic transition during development. An implication of this is that the zebrafish, a model almost ubiquitously accepted in other fields of comparative biology, may be poorly suited to the study of conotruncal abnormalities in human disease. However, while the use of atrioventricular-specific molecular markers has allowed extensive characterization of the development of the atrium and ventricle, the lack of any bulbus-specific markers has meant that this region of the zebrafish heart is poorly characterized and quite possibly misunderstood. We have discovered that the fluorescent nitric oxide indicator 4,5-diaminofluorescein diacetate (DAF-2DA) specifically labels the bulbus arteriosus throughout development from approximately 48 h post-fertilization. Therefore, using DAF-2DA and an immunohistochemical approach, we attempted to further characterize the development of the bulbus. We have concluded that no such phenotypic transition occurs, that contrary to current thinking, aspects of zebrafish arterial pole development are evolutionarily conserved, and that the bulbus should not be considered a chamber, being more akin to the arterial trunk(s) of higher vertebrates.  相似文献   

17.
Elastin is the extracellular matrix protein responsible for properties of extensibility and elastic recoil in large blood vessels, lung and skin of most vertebrates. Elastin is synthesized as a monomer, tropoelastin, but is rapidly transformed into its final polymeric form in the extracellular matrix. Until recently information on sequence and developmental expression of tropoelastins was limited to mammalian and avian species. We have recently identified and characterized two expressed tropoelastin genes in zebrafish. This was the first example of a species with multiple tropoelastin genes, raising the possibility of differential expression and function of these tropoelastins in elastic tissues of the zebrafish. Here we have investigated the temporal expression and tissue distribution of the two tropoelastin genes in developing and adult zebrafish. Expression was detected early in skeletal cartilage structures of the head, in the developing outflow tract of the heart, including the bulbus arteriosus and the ventral aorta, and in the wall of the swim bladder. While the temporal pattern of expression was similar for both genes, the upregulation of eln2 was much stronger than that of eln1. In general, both genes were expressed and their gene products deposited in most of the elastic tissues examined, with the notable exception of the bulbus arteriosus in which eln2 expression and its gene product was predominant. This finding may represent a sub-specialization of eln2 to provide the unique architecture of elastin and the specific mechanical properties required by this organ.  相似文献   

18.
Summary The existence of a neural crest cell migration pathway from occipital levels of the hindbrain into the heart was suspected in mammalian embryos because it had previously been identified in avian embryos and because the Di George anomaly, an association between craniofacial and cardiac malformations, is most easily explained on the basis of abnormal neural crest cell migration to all of the affected structures. In order to demonstrate the existence of this pathway, neural crest cells were labelled in situ in rat embryos with the fluorescent dye DiI, and the embryos cultured for up to 48 h. Cells labelled between occipital somites 1 and 2 or 3 and 4 migrated within and dorsal to the third and fourth pharyngeal arches and into the outflow tract of the heart (conus cordis and truncus arteriosus). The cardiac labelling was in individually visible cells, in contrast to the mass of fluorescence seen in the pharyngeal and dorsal mesenchyme. Within the outflow tract wall, the labelled cells were enmeshed by strands of alcian blue-stained extracellular matrix. There was no labelling of cardiac cells following injections just rostral to, or just caudal to, somites one and four. This study establishes the existence and precise levels of origin of the cardiac neural crest in a mammalian embryo.  相似文献   

19.
This study focuses on the dynamic flow through the fetal aortic arch driven by the concurrent action of right and left ventricles. We created a parametric pulsatile computational fluid dynamics (CFD) model of the fetal aortic junction with physiologic vessel geometries. To gain a better biophysical understanding, an in vitro experimental fetal flow loop for flow visualization was constructed for identical CFD conditions. CFD and in vitro experimental results were comparable. Swirling flow during the acceleration phase of the cardiac cycle and unidirectional flow following mid-deceleration phase were observed in pulmonary arteries (PA), head-neck vessels, and descending aorta. Right-to-left (oxygenated) blood flowed through the ductus arteriosus (DA) posterior relative to the antegrade left ventricular outflow tract (LVOT) stream and resembled jet flow. LVOT and right ventricular outflow tract flow mixing had not completed until approximately 3.5 descending aorta diameters downstream of the DA insertion into the aortic arch. Normal arch model flow patterns were then compared to flow patterns of four common congenital heart malformations that include aortic arch anomalies. Weak oscillatory reversing flow through the DA junction was observed only for the Tetralogy of Fallot configuration. PA and hypoplastic left heart syndrome configurations demonstrated complex, abnormal flow patterns in the PAs and head-neck vessels. Aortic coarctation resulted in large-scale recirculating flow in the aortic arch proximal to the DA. Intravascular flow patterns spatially correlated with abnormal vascular structures consistent with the paradigm that abnormal intravascular flow patterns associated with congenital heart disease influence vascular growth and function.  相似文献   

20.
The study is a survey of the shape and carbohydrate histochemistry of the endothelial cells lining the conus arteriosus of 10 species of elasmobranchs and the bulbus arteriosus of 80 species of teleosts. Intensely PAS-positive cells that were often tall, were found in many teleosts and were typical of phylogenetically advanced species. They were not seen in any elasmobranch. Most of the teleosts with strongly PAS-positive cells were marine fish or euryhaline animals that were caught in freshwater. Beyond this, it is difficult to generalize on their life-style or habitat, for they included small fish, large fish, fast swimmers, bottom-living forms, deep-water fish, littoral species and Antarctic "bloodless" forms. It is likely that the PAS-positivity of the endothelial cells can be attributed to the moderately-dense granules revealed by E.M., but as yet the significance of these is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号