首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: 1. How do the competitive response and the importance of competition vary between species and along a flooding gradient? 2. How does the role of competition in constraining species distribution limits along the gradient vary between lower and upper limits? Location: A 1‐ha meadow within the Alzette floodplain in Luxembourg. Methods: Competitive response and importance of competition were assessed on seven meadow species differing in their tolerance to flooding. Species were cultured in monocultures and in mixtures, in three water treatments reflecting the wet, the middle and the dry end of a natural flooding gradient. We developed two models based on a multiple regression in order to express each component of competition as a function of the neighbour biomass. Results: Five species showed variations in their competitive response across water treatments; however, these species achieved either their highest or their worst competitive response in their optimal water treatment (i.e. the treatment in which the species had the highest biomass in monoculture). Competition was more important for the flood‐tolerant species in the dry treatment than for the flood‐intolerant species in the wet treatment. Conclusions: 1. Variations in species competitive responses along flooding gradients may be the result of either an amplified effect between competition and hydrological stresses, or a hierarchical effect of stress over competition. 2. The role of competition is more important in constraining the upper distribution limits of the flood‐tolerant species than the lower limits of the flood‐intolerant species along flooding gradients.  相似文献   

2.
Empirical evidence suggests that the direction and intensity of plant–plant interactions may depend on the favourability of the environment. Previous studies have mainly focused on steep gradients of environmental stress or disturbance, while the interplay of competition and environment has not been tested for subtle environmental differences. Here, we present results from a study on plant communities of temporary wetlands in East-German farmland. Due to yearly ploughing in autumn, the vegetation is composed of annual species. Flooding does not affect adult plants and the elevation on the gradient expresses differences in the length of the growing season rather than in disturbance intensity or severe environmental stress. We tested whether such subtle differences in environmental stress may affect the importance of interspecific competition by the dominant species. Two treatments were applied at two elevations: removal of the dominant species (Matricaria maritima ssp. inodora) and reciprocal transplants of the seed-bank of the two elevations. At both elevations, removal of Matricaria inodora led to an increase in total species richness and number of wetland species, but the effects were substantially stronger at high elevations. Removal and the elevation on the flooding gradient significantly influenced the plant community composition. In particular, the weed communities became more similar to the wetland communities after the removal. Transplanted weed species did not emerge at low elevations. While two of four target species had significantly higher densities after the removal at high elevations, none of them was influenced by removal at low elevations. This indicates that, consistent with previous studies from other habitat types, competition by the dominant species was more intense under conditions of low environmental stress. The overall results suggest that both flooding as well as interspecific competition are important in structuring the plant communities along the freshwater gradient studied.  相似文献   

3.
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.  相似文献   

4.
The relationship between seed germination and ecological niche is determined by matching germination characteristics with environmental features. In this study, we selected tree species occurring in the largest savanna wetland in South America – the Pantanal. Very few species are endemic or exclusively found in savanna wetlands, and the majority of tree species occurring in the Pantanal are also found in the neighbouring Brazilian Cerrado, a drier vegetation type that does not flood. We investigated the relationship between germination characteristics and occurrence of savanna trees in wetlands testing the hypothesis that such seeds are tolerant to flooding. We also addressed the question of whether seed tolerance to flood, assessed by survival analysis, explains tree distribution along a gradient of flooding intensity. In this flooding gradient, widely distributed species are those that occur in areas subjected to low as well as to high flooding intensity whereas restricted distributed species are those that occur only in areas subjected to a low level of flood. Seeds from tree species occurring in areas subjected to different flooding intensities were collected. Seed tolerance and germination during and after both one and two months of simulated flood were evaluated. Our results show that seeds of most of the studied savanna species tolerated submergence, which helps to explain their occurrence and wide distribution in wetlands. Nevertheless, germination behaviour checked by survival functions (i.e. how germination is distributed over time) partially explained tree species distribution along a flooding gradient. We conclude that seed tolerance to flooding is one of the components of the regeneration niche that determines tree occurrence and distribution at the regional scale, from savanna to wetland, but not at a local scale along a flooding gradient.  相似文献   

5.
《Acta Oecologica》2004,25(1-2):17-22
Both waterlogging and water deficiency are major environmental factors affecting plant growth and functioning in many wetland and floodplain ecosystems across North America. Wetland plants possess various characteristics that enable them to survive and function in the intermittently flooded wetland environments, while their sensitivity to drought has received less attention. The present study quantified the photosynthetic and growth responses of cattail (Typha latifolia), an important species of freshwater wetlands, to a wide range of soil moisture regimes. In addition, changes in the efficiency of photosynthetic apparatus following initiation of the treatments were investigated. Under greenhouse conditions, seedlings were subjected to four soil moisture regimes: (1) drained (control), (2) continuous flooding, (3) periodic flooding, and (4) periodic drought. Results indicated that dark fluorescence yield was increased in response to periodic drought, while it showed decreases under continuous flooding. Net photosynthesis and stomatal conductance were enhanced by continuous flooding and periodic flooding. In contrast, these parameters exhibited reduction under periodic drought. In addition, leaf chlorophyll content was adversely affected by periodic drought. Recovery of net photosynthesis was noted, along with enhanced height growth, in both continuously and periodically flooded plants. Meanwhile, continuous flooding enhanced biomass production while periodic drought led to biomass reduction. Periodic drought also contributed to substantial reduction in root growth compared with shoot growth. Therefore, the combined photosynthetic performance and growth responses of cattail are likely to contribute to the ability of this species to thrive in flooded condition but be susceptive to periodic drought.  相似文献   

6.
Our goal was to establish the tolerance to flooding and drought of seedlings from a hydric gradient of different seed sources to provide recommendations for forest restoration in the face of climate change. We used Drimys winteri var. chilensis, a tree species that grows from extreme arid zones to wetlands along Chile, as the study subject. We expected that seedlings of xeric origin would perform better in drought conditions than populations from moist environments, and vice versa for flooding tolerance. We collected D. winteri seeds from xeric, mesic and wet environments. Seedlings at two development stages were submitted to an extreme flooding and drought treatment during 2 or 4 months in a common garden. After the flooding and drought assays finished, the number of surviving and damaged seedlings, lenticels and adventitious root presence, height, new leaves and specific leaf area, shoot/root ratio, water potential and/or chlorophyll fluorescence (Fv/Fm), were recorded. We found that flooding and drought affected almost all the parameters studied negatively. The xeric population seedlings, at both development stages studied, were the most tolerant to the drought and, unexpectedly, also to the flooding treatment. We recommend restoring with seedlings of xeric origin especially in arid areas where sudden flooding is frequent, as occurs in the Andes Mountains. In the face of climate change, we recommend carrying out common garden and field studies before advising which population origin should be used for restoration, since they do not always respond in accordance with expected patterns of local adaptation.  相似文献   

7.
The effect of soil flooding on arbuscular-mycorrhizal (AM) fungal colonization of wetland plants was investigated using Panicum hemitomon and Leersia hexandra , two semi-aquatic grasses (Graminaceae) that grow along a wide hydrologic gradient in Carolina bay wetlands of the southeastern US coastal plain. Three related investigations were conducted along the dry-to-wet gradient in these wetlands; a field survey of AM fungal root colonization in eight wetlands, monthly monitoring of colonization patterns in P. hemitomon over a growing season, and an inoculum potential bioassay of soils collected along the gradient. The field survey showed that AM fungal colonization was strongly negatively correlated with water depth, but colonization was present in most root samples. The monthly assessment indicated that AM fungal colonization was lowest in plots that were consistently wet but rose as some plots underwent seasonal drying. The inoculum potential assay of dry, intermediate, and wet soils performed under both dry and saturated conditions showed that soils that were wet for >1 yr had the same ability to form mycorrhizas in bait plants as those that had remained dry. These findings suggested that the lower degree of colonization in wet areas observed in the field survey was because of the presence of surface water rather than low numbers of mycorrhizal propagules in the soil. Overall, the results of these investigations show that flooding is partially but not totally inhibitory to AM fungal colonization of wetland grasses.  相似文献   

8.
Salt marshes of Samborombón Bay (Argentina) have been grazed sporadically at very low stocking rates, but in the last decade, grazing intensity increased due to agriculture expansion. We investigated the effect of cattle grazing on vegetation and soil salinity on the most extended Spartina densiflora community. This community develops along an elevation gradient where the frequency and duration of tidal flooding and soil salinity increased as elevation decreased. Vegetation and soil data were collected from a national park excluded to cattle grazing for 30 years and from an adjacent commercial livestock farm continuously grazed by cattle. As elevation level decreased, plant cover, richness and diversity of functional groups and species decreased. As we expected, grazing altered soil salinity and vegetation composition in different extent along the elevation gradient. Grazing changed vegetation structure more intensively in the high elevation level because it reduced the competitive exclusion exerted by S. densiflora, allowing the increase in floristic richness. Grazing increased soil salinity and the contribution of salt-tolerant species only in the medium but not in the low elevation level probably because the higher frequency and duration of tidal flooding counterbalanced the increase in evaporation promoted by biomass removal in the low respect to the medium elevation level. While grazing may cause positive impacts for plant conservation in the high elevation level, it may cause negative consequence for livestock production because of the reduction in forage quality along the entire elevation gradient.  相似文献   

9.
Daniel Spitale 《Oecologia》2009,160(3):471-482
The relative importance of positive and negative interaction in species assemblages is thought to be dependent on the harshness of the physical environment. I studied the consistency of this prediction in a field experiment using growth of the target species Warnstorfia exannulata as influenced by the presence or absence of two adjacent species, Sphagnum warnstorfii and Scapania undulata. In particular, I focused on the mechanism by which colony–colony interactions occur, elucidating how the balance of positive and negative interactions changes along a water gradient. Because the natural fluctuations of the environment modify the water gradient, it was expected that the competitive hierarchies of the species would not remain consistent over time. Results indicated that the different hydrological properties of the colonies, thought to be the necessary condition for the appearance of species interactions, were not sufficient to explain the outcome of the species interactions. The switch from competition to facilitation under more stressful conditions was not confirmed along a water stress gradient. In addition, natural climatic fluctuations, by affecting the length of the water gradient, changed the competitive hierarchies of the species on a seasonal scale.  相似文献   

10.
As sea levels rise, birds nesting in coastal marshes will be particularly vulnerable to increased tidal inundation. Understanding how marsh birds select their nesting habitat along the elevational gradient of these marshes will provide insight into how these species might be affected by rising sea levels. Clapper Rails (Rallus crepitans) are coastal marsh‐nesting birds whose nests are vulnerable to flooding, but it is not clear if they select for habitat along the elevational gradient or only use other habitat cues. Our objective was to determine if Clapper Rails select higher‐elevation nest sites, while also controlling for selection of other habitat variables at both landscape and territory levels, by comparing nest habitat to habitat in other areas of territories and at random points in the marsh landscape. At the landscape level, Clapper Rails did not exhibit selection for the elevational gradient, with nests and random points at similar elevations. At the territory level, however, nest‐site selection was most influenced by elevation and plant height, with Clapper Rails selecting nest sites with higher elevations and in areas with taller plants. However, the strength of the elevation effect was uncertain, suggesting the importance of precise elevation measurements in the field. Given this selection for higher‐elevation nest sites, Clapper Rails may be somewhat resilient to increased tidal inundation. However, the potential for increased intra‐ and interspecific competition for high‐elevation marshes should make conservation of these habitats a priority.  相似文献   

11.
We conducted an in situ decomposition experiment to better understand how habitat nutrient content controls aquatic plant decomposition and, more precisely, to determine the relative importance of the wetland conditions in decomposition, and the intrinsic degradability of plant tissues. We collected the green leaves of three aquatic plant species with contrasting plant strategies from three wetlands of differing nutrient contents, and allowed them to decompose in seven wetlands along a nutrient gradient. The plant mass loss was higher for competitive and ruderal species collected in nutrient richer wetlands as well as when they were led to decompose in nutrient richer wetlands. Plant water content correlated with mass loss for the competitive and ruderal species, which may explain the increase in mass loss with increasing nutrient content in the collection wetlands. Litter decomposition rate may be enhanced by wetland eutrophication, because of both the modification of wetland decomposition conditions and by changes in plant tissue quality.  相似文献   

12.
Climate change impacts, such as accelerated sea‐level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade‐offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space‐for‐time substitutions of stress factors and can give insight into future climate‐related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea‐level rise across existing marsh elevations and those not currently found to reflect potential future sea‐level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80‐cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase.  相似文献   

13.
Lopez OR  Kursar TA 《Oecologia》2003,136(2):193-204
In the tropics, seasonally flooded forests (SFF) harbor fewer tree species than terra firme (i.e. non-flooded) forests. The low species diversity of tropical flooded forests has been ascribed to the paucity of species with adaptations to tolerate flooding. To test the hypothesis that flooding is the only factor restricting most species from SFF, we compared plant morphological and physiological responses to flooding in 2-month old seedlings of 6 species common to SFF and 12 species common to terra firme forests. Although flooding impaired growth, total biomass, maximum root length and stomatal conductance in most species, responses varied greatly and were species-specific. For example, after 90 days, flooding reduced leaf area growth by 10-50% in all species, except in Tabebuia, a common species from non-flooded habitats. Similarly, flooding had a 5-45% negative effect on total biomass for all species, except in 1 SFF and 1 terra firme species both of which had more biomass under flooding. A principal component analysis, using the above responses to flooding, provided no evidence that SFF and terra firme species differed in their responses to flooding. Flooding also caused reductions in root growth for most species. Rooting depth and root: shoot ratios were significantly less affected by flooding in SFF than in terra firme species. Although flood tolerance is critical for survival in flooded habitats, we hypothesize that responses to post-flooding events such as drought might be equally important in seasonal habitats. Therefore, we suggest that the ability to grow roots under anoxia might be critical in predicting success in inundated habitats that also experience a strong dry season.  相似文献   

14.
Sea-level rise threatens low-lying coastal ecosystems globally. In Florida, USA, salinity stress due to increased tidal flooding contributes to the dramatic and well documented decline of species-rich coastal forest areas along the Gulf of Mexico. Here, we present the results of a study of coastal forest stand dynamics in thirteen 400 m2 plots representing an elevation gradient of 0.58–1.1 m affected by tidal flooding and rising sea levels. We extended previously published data from 1992–2000 to 2005 to quantify the full magnitude of the 1998–2002 La Niña-associated drought. Populations of the dominant tree species, Sabal palmetto (cabbage palm), declined more rapidly during 2000–2005 than predicted from linear regressions based on the 1992–2000 data. Dramatic increases in Juniperus virginiana (Southern red cedar) and S. palmetto mortality during 2000–2005 as compared with 1995–2000 are apparently due to the combined effects of a major drought and ongoing sea-level rise. Additionally, coastal forest stands continued to decline in species richness with increased tidal flooding frequency and decreasing elevation. Stable isotope (H, O) analyses demonstrate that J. virginiana accesses fresher water sources more than S. palmetto . Carbon isotopes reveal increasing δ 13C enrichment of S. palmetto and J. virginiana with increased tidal flooding and decreased elevation, demonstrating increasing water stress in both species. Coastal forests with frequent tidal flooding are unable to support species-rich forests or support regeneration of the most salt-tolerant tree species over time. Given that rates of sea-level rise are predicted to increase and periodic droughts are expected to intensify in the future due to global climate change, coastal forest communities are in jeopardy if their inland retreat is restricted.  相似文献   

15.
Flooding and drought are the two different forms of water stress that adversely affect the growth and development of soybean plant in particular at early stage. Ascorbate peroxidase (APX) is a known antioxidant enzyme that plays key role in abiotic stresses. To investigate the changes in APX in soybean under drought and flooding stresses, western blotting, enzyme activity assay and biophoton emission techniques were used. Flooding stress was imposed by adding excess amount of water in the sand and drought by withholding water supply. Under flooding stress, a decrease in APX was detected with time. Completely opposite trend was evident in hypocotyl and root of plants exposed to drought. Western blotting and APX activity results are complementary to each other. Biophoton emissions further confirmed the increasing and decreasing trend of APX under drought and flooding stress, respectively.  相似文献   

16.
George W. Uetz 《Oecologia》1976,22(4):373-385
Summary Species composition and diversity of a guild of wandering spiders was studied by pitfall trapping over an elevational gradient in an Illinois streamside forest. Differences in flooding frequency and their effect on the litter habitat (removal and/or compression) account for a majority of the variation in the number of species between elevations. Changes in spider communities with elevation over the flooding gradient are indicative of a transition from a harsh to a moderate environment: (1) increased abundance and species diversity; (2) decreased dominance of flood tolerant species accompanied by increased dominance of species with specialized microhabitats found in complex litter; (3) greater similarity in species composition between sites; and, (4) a change in species-abundance curves from a geometric series to a lognormal distribution. The influence of the flooding regime in regulating community structure of spiders is discussed. A multiple regression equation including flood frequency and litter depth as variables was used to predict the impact of altered flooding regimes (due to reservoir construction downstream) on spider diversity.  相似文献   

17.
Questions: How are the early survival and growth of seedlings of Everglades tree species planted in an experimental setting on artificial tree islands affected by hydrology and substrate type? What are the implications of these responses for broader tree island restoration efforts? Location: Loxahatchee Impoundment Landscape Assessment (LILA), Boynton Beach, Florida, USA. Methods: An experiment was designed to test hydrological and substrate effects on seedling growth and survivorship. Two islands – a peat and a limestone‐core island representing two major types found in the Everglades – were constructed in four macrocosms. A mixture of eight tree species was planted on each island in March of 2006 and 2007. Survival and height growth of seedlings planted in 2006 were assessed periodically during the next two and a half years. Results: Survival and growth improved with increasing elevation on both tree island substrate types. Seedlings' survival and growth responses along a moisture gradient matched species distributions along natural hydrological gradients in the Everglades. The effect of substrate on seedling performance showed higher survival of most species on the limestone tree islands, and faster growth on their peat‐based counterparts. Conclusions: The present results could have profound implications for restoration of forests on existing landforms and artificial creation of tree islands. Knowledge of species tolerance to flooding and responses to different edaphic conditions present in wetlands is important in selecting suitable species to plant on restored tree islands  相似文献   

18.
Price JN  Berney PJ  Ryder D  Whalley RD  Gross CL 《Oecologia》2011,167(3):759-769
Dominance of invasive species is often assumed to be due to a superior ability to acquire resources. However, dominance in plant communities can arise through multiple interacting mechanisms, including disturbance. Inter-specific competition can be strongly affected by abiotic conditions, which can determine the outcome of competitive interactions. We evaluated competition and disturbance as mechanisms governing dominance of Phyla canescens (hereafter lippia), an invasive perennial forb from South America, in Paspalum distichum (perennial grass, hereafter water couch) meadows in floodplain wetlands of eastern Australia. Water couch meadows (in the study area) are listed under the Ramsar Convention due to their significance as habitat for migratory waterbirds. In the field, we monitored patterns of vegetation boundaries between the two species in response to flooding. Under controlled glasshouse conditions, we explored competitive interactions between the native water couch and lippia subject to different soil moisture/inundation regimes. We did this using a pairwise factorial glasshouse experiment that manipulated neighbor density (9 treatments) and soil moisture/inundation (4 treatments). In the field trial, inundation increased the cover of water couch. Under more controlled conditions, the invader had a competitive effect on the native species only under dry soil conditions, and was strongly inhibited by inundation. This suggests that dry conditions favor the growth of the invader and wetter (more historical) conditions favor the native grass. In this system, invader dominance is governed by altered disturbance regimes which give the invader a competitive advantage over the native species.  相似文献   

19.
How plant competition varies across environmental gradients has been a long debate among ecologists. We conducted a growth chamber experiment to determine the intensity and importance of competition for plants grown in changed environmental conditions. Festuca rubra and Trifolium pratense were grown in monoculturs and in two- and/or three-species mixtures under three environmental treatments. The measured competitive variations in terms of growth (height and biomass) were species-dependent. Competition intensity for Festuca increased with decreased productivity, whilst competition importance displayed a humpback response. However, significant response was detected in neither competition intensity nor importance for Trifolium. Intensity and importance of competition followed different response patterns, suggesting that they may not be correlated along an environmental gradient. The biological and physiological variables of plants play an important role to determine the interspecific competition associated with competition intensity and importance. However, the competitive feature can be modified by multiple environmental changes which may increase or hinder how competitive a plant is.  相似文献   

20.
Evan Twomey  Victor Morales  Kyle Summers 《Oikos》2008,117(8):1175-1184
Mechanisms resulting in parapatric distributions of closely related taxa have long interested ecologists. If two species are distributed across an environmental gradient, and differ in their ability to cope with environmental conditions, the outcome of competitive interactions may be dependent on prevailing abiotic conditions. Two closely related species of poison frogs in north–central Peru were observed to occupy parapatric distributions across an elevation gradient. Ameerega bassleri is a highland endemic restricted to a small region of Peru, and A. trivittata is distributed throughout lowland Amazonia. The goal of this study was to examine the effect of an abiotic factor (elevation) on two biotic factors (intraspecific and interspecific competition), by measuring growth and survival in the larvae of A. trivittata and A. bassleri . Using mesocosm experiments arranged in a fractional factorial design, we found that (1) A. bassleri had a strong negative effect on the growth and survival of A. trivittata regardless of elevation, (2) A. trivittata had no effect on the growth of A. bassleri at either elevation, but did appear to reduce the survival of A. bassleri more strongly in the lowlands than highlands, (3) lowland conditions uniformly reduced survival in all treatments and in both species, and (4) competition was strongly asymmetric between A. bassleri and A. trivittata . We conclude that the perceived low density of A. trivittata in highland sites may be influenced by the presence of A. bassleri, but the lower limit to the distribution of A. bassleri cannot be explained by competition with A. trivittata and may be due to physiological constraints imposed by lowland conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号