首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
熊智  王连荣  陈实 《微生物学报》2018,58(11):1916-1925
高通量测序技术已经增加了人们对肠道微生物组和表观遗传学修饰的理解,将肠道微生物组和宿主表观遗传学修饰紧密联系起来,阐明了很多疾病的发生过程如免疫、代谢、心血管疾病甚至是癌症。肠道微生物组与宿主具有相互作用,与人体密不可分,相辅相成。肠道微生物组的生态失调可能诱导疾病的发生并能调控宿主表观遗传学修饰。宿主表观遗传学调控和肠道微生物组(或其代谢产物)变化的相互关系在很多疾病中都有报道。因此,肠道微生物组可作为某些疾病的诊断标记,健康肠道微生物组的移植会逆转这种微生态失调,可作为一种有效的治疗策略。本文主要探讨了肠道微生物组直接调控宿主表观修饰和通过小分子生物活性物质和其他酶辅因子间接影响表观修饰,以及基于肠道微生物组调控宿主表观修饰的诊断和治疗应用等。  相似文献   

6.
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic dis-eases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary fac-tors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut micro-biome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advan-ces in improving metabolic diseases by regulating the gut microbiome will be discussed.  相似文献   

7.
8.
There is growing awareness of the importance of the gut microbiome in health and disease, and recognition that the microbe to host metabolic signalling is crucial to understanding the mechanistic basis of their interaction. This opens new avenues of research for advancing knowledge on the aetiopathologic consequences of dysbiosis with potential for identifying novel microbially-related drug targets. Advances in both sequencing technologies and metabolic profiling platforms, coupled with mathematical integration approaches, herald a new era in characterizing the role of the microbiome in metabolic signalling within the host and have far reaching implications in promoting health in both the developed and developing world.  相似文献   

9.
10.
11.
Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology though both genetic and environmental factors have been suggested to be involved in its pathogenesis. While infections and other environmental factors (e.g. smoking) have been studied extensively and show some association, a direct link between all the factors has been difficult to prove. With the recent advances in technology, it has become possible to sequence the commensals that are residing in our gut. The gut microbiome may provide the missing link to this puzzle and help solve the mystery of many leaky gut syndromes. The gut commensals are involved in maintaining host immune homeostasis and function suggesting that they might be critical in altering the immune system, which leads to autoimmune diseases like RA. Mouse models support the role of the gut microbiota in predisposition to RA. If that is true, the power of gut-derived commensal can be harnessed to our benefit by generating a biomarker profile along with genetic factors to define individuals at risk and by altering the gut microbial composition using various means.  相似文献   

12.
13.
14.
15.
16.
王倩  刘玉升 《微生物学通报》2023,50(7):3137-3145
蝗虫自古以来是我国农林牧业的一大害虫,蝗虫聚集成灾对农业造成了巨大的损失,国内外学者也因此对其进行了深入的研究。随着科研工作者对昆虫肠道微生态学理论的逐渐重视,蝗虫的肠道微生物也成为了研究的重点,同时测序技术的迅速发展促进了蝗虫肠道微生物的研究。本文从蝗虫肠道菌群的多样性、功能及研究方法入手,对近年来蝗虫肠道微生物的研究进展进行总结,并对今后的研究进行展望。  相似文献   

17.
18.
19.
Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large‐scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture‐independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single‐nucleotide variation clearly indicates the existence of sub‐populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies‐specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro‐inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host.  相似文献   

20.
In this review, we discuss the connections between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). We examine the mitochondrion as an endosymbiotic organelle that is a hub for energy production, signaling, and cell homeostasis. Maintaining a diverse gut microbiome is generally associated with organismal fitness, intestinal health and resistance to environmental stress. In contrast, gut microbiome imbalance, termed dysbiosis, is linked to a reduction in organismal well-being. ROS are essential signaling molecules but can be damaging when present in excess. Increasing ROS levels have been shown to influence human health, homeostasis of gut cells, and the gastrointestinal microbial community's biodiversity. Reciprocally, gut microbes can affect ROS levels, mitochondrial homeostasis, and host health. We propose that mechanistic understanding of the suite of bi-directional interactions between mitochondria and the gut microbiome will facilitate innovative interdisciplinary studies examining evolutionary divergence and provide novel treatments and therapeutics for disease.GlossIn this review, we focus on the nexus between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). Mitochondria are a cell organelle that is derived from an ancestral alpha-proteobacteria. They generate around 80% of the adenosine triphosphate that an organism needs to function and release a range of signaling molecules essential for cellular homeostasis. The gut microbiome is a suite of microorganisms that are commensal, symbiotic and pathogenic to their host. ROS are one predominant group of essential signaling molecules that can be harmful in excess. We suggest that the mitochondria- microbiome nexus is a frontier of research that has cross-disciplinary benefits in understanding genetic divergence and human well-being.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号