首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dear Editor, During recent decades, a novel mechanism of secretion has been identified in a wide range of mammalian cells. It involves the release of bioactive membrane nanovesicles (30-100 nm), termed exosomes, upon the fusion of multivesicular bodies with the plasma membrane (Thery et al., 2009). Exosomes are implicated in diverse functions, such as scavenging of archaic proteins, intercellular messengers delivering cell-specific signals, and vehicles for transmissible pathogens. Exosomes have also been described in other organisms such as bacte- ria, Drosophila, and fungi.  相似文献   

2.
Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosema ceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.  相似文献   

3.
Airborne Pollen Grains of Burdur, Turkey   总被引:1,自引:0,他引:1  
  相似文献   

4.
Pollen morphology of 89 species and 3 varieties belonging to 18 genera (out of 150 spcies in 20 genera) of Zingiberaceae in China was studied under both light microscope and scanning electron microscope. Pollen grains of Zingiberaceae are spherical, subspherical, ovoid and prolate, 36-225 μm in size, nonaperturate or aperturate (spiraperturate, porate). Pollen grains are almost not resistant to acetolysis. The wall is composed of a very thin exine and a thick intine. The exine is psilate, spinate, cerebelloid-areolate, striate, verrucate and foveolate. According to the presence or the absence of aperture and differential ornamentations, two types and six subtypes are recognized: I. The type Nonaperturate: (85 species and 3 varieties in 18 genera). Four subtypes can be recognized within the type based on the characteristics of the exine sculpture. These are: (1) The subtype Psilate, in which, the exine is nearly smooth (including: Hedychium, Curcuma, Kaempferia, Caulokaempferia coenobilis, Boesenbergia rotunda, Stahlianthus, Amomum compactum, Etingera, Hornstedtis, Rhynchanthus). (2) The subtype Spinate, which comprises two groups: (A) The group Short-spinate, pollen grains with smaller spines (Globba), (B) The group Long-spinate, pollen grains with longer spines (Alpinia, Amomum, Plagiostachys, Roscoea, Cautleya, Boesenbergia fallax, Caulokaempferia yunnanensis). (3) The subtype Cereblloid-areolate, pollen grains of which are spherical or subspherical, with cerebelloid sculpture (Zingiber Sect. Zingiber). (4) The subtype Striate, pollen grains of which are prolate or oliveshaped, and striate (Zingiber Setc. Cryptanthium). II. The type Aperturate, in which pollen grains are acetilysis-resistant and possess distinct apertures (mixed colpate-porate or forate), including two subtypes: (1)The subtype Mixed colpate and Porate. Pollen grains are both 3-colpate and 1-3-porate, and usually with one long spiral, two short (straight or slightly curved) colpi and 1-3-poris. The exine is verrucate or not, nearly sinuolate (Costus speciosus, C. tonkinensis, C. lacerus). (2) The subtype porate, whose grains are 6-8-porate and exine is foveolate (Costus megalobractea). The taxonomic significance of the pollen types in the family Zingiberaceae is also discussed.  相似文献   

5.
Pollen grains: Why so many?   总被引:14,自引:0,他引:14  
My objective is the examination of selective forces that affect pollen number. Relationships among other floral traits of animalpollinated plants, including pollen size, stigma area and depth, and the pollen-bearing area of the pollinator may affect pollen number and also provide a model to examine how change in one trait may elicit change in other traits. The model provides a conceptual framework for appreciating intra- and inter-specific differences in these traits. An equivalent model is presented for wind-pollinated plants. For these plants the distance between putative mates may be the most important factor affecting pollen number. I briefly consider how many pollen grains must reach a stigma to assure fruit set. I use pollen-ovule ratios (P/Os) to examine how breeding system, sexual system, pollen vector, and dispersal unit influence pollen grain number. I also compare the P/Os of plants with primary and secondary pollen presentation and those that provide only pollen as a reward with those that provide nectar as part or all of the reward. There is a substantial decrease in P/O from xenogamy to facultative xenogamy to autogamy. Relative to homoecious species the P/Os of species with most other sexual systems are higher. This suggests that there is a cost associated with changes in sexual system. The P/Os of wind-pollinated plants are substantially higher than those of animal-pollinated plants, and the available data suggest there is little difference in the pollination efficiency of the various animal vectors. The P/Os of plants whose pollen is dispersed in tetrads, polyads, or pollinia are substantially lower than those of species whose pollen is dispersed as monads. There was no difference in the P/Os of plants with primary and secondary pollen presentation. The P/Os of plants that provide only pollen as a reward were higher than those that provide nectar as a reward. All of these conclusions merit additional testing as they are based on samples that are relatively small and/or systematically biased.  相似文献   

6.
 A series of studies, recently reviewed, has established that approximately 60% of the structural genes which are expressed in the sporophytic portion of the angiosperm life cycle are also expressed and exposed to selection in the pollen. Given the haploidy and large population sizes of pollen grains, a substantial portion of the sporophytic genome could thus be periodically exposed to a bacterial type of mass screening. This extraordinary possibility is often subject to some skepticism which may, of course, be justified. However, recent attempts to apply models appear to be inappropriate in this context, in part because these attempts overlook an important source of genetic variation, and also because they assume fixed values for selection and fitness. More recently, studies of pollen/pollen interactions have suggested that what Linskens termed the ”programic phase” may represent an arena for important, and largely unexplored phenomena, some of which are discussed here. Received: 3 June 1996 / Revision accepted: 26 July 1996  相似文献   

7.
Pollen as food and medicine—A review   总被引:2,自引:0,他引:2  
Pollen, the male gametophyte of flowering plants, is a high energy material, which is collected by insects and stored as food reserve. Pollen has been used traditionally by humans for religious purposes and as supplementary food. Pollen is a concentrated, energy and vitamin rich food that in contemporary times is not only consumed as a dietary component, but also is used in alternative medical treatments. Pollen has potential imporiance as a supplementary and survival food, and for conditioning of athletes. Pollen has been used medically in prostatitis, bleeding stomach ulcers and some infectious diseases, although such use has been questioned by the medical profession. Pollen may also be used for treatment and prevention of the high-altitude-sickness syndrome. Because some individuals are allergic to pollen, and various pollen species contain specific allergens, individual sensitivities must be tested before pollen is used as a treatment or as a supplementary food.  相似文献   

8.
Pollen coatings have long been assumed to play a pivotal role in pollen-stigma interactions, but until now little clear evidence supporting such a function has been available. Recently, however, the use of isolated coatings of Brassica sp. in experiments in vivo has unequivocally demonstrated that the pollen coat layer is responsible for activation of the stigmatic surface, and that it contains the male determinant of the self-incompatibility system. Surprisingly, molecular analysis of the Brassica pollen coat reveals this layer to include both sporophytic and gametophytic components, the latter including a family of small highly-charged proteins which interact with stigmatic molecules known to be encoded by the S(incompatibility)-locus. Most recently, work on Brassica and Arabidopsis suggests that the adhesive function of the coating is more complex than suspected and involves both stigmatic factors and the exine surface itself. Despite this new insight into the genetics and function of pollen coatings, the mechanisms by which components of these layers are formed in the tapetum and translocated to the pollen grain surface remain far from clear. Received: 29 November 1999 / Revision accepted: 18 January 2000  相似文献   

9.
10.
11.
12.
Sperm competition theory predicts that males should produce many, similar sperm. However, in some species of animals and plants, males exhibit a heteromorphism that results in the production of at least two different types of sperm or pollen grains. In animals, sperm heteromorphism typically corresponds to the production of one fertile morph and one (or more) sterile morph(s), whereas in plants two or more pollen morphs (one of which can be either sterile or fertile) are produced in all flowers but sometimes in different anthers. Heteromorphism has arisen independently several times across phyla and at different phylogenetic levels. Here, we compare and contrast sperm and pollen heteromorphism and discuss the evolutionary hypotheses suggested to explain heteromorphism in these taxa. These hypotheses include facilitation, nutritive contribution, blocking, cheap filler, sperm flushing or killing for animals; outcrossing and precise cross-pollen transfer or bet-hedging strategy for plants; cryptic female choice for both. We conclude that heteromorphism in the two phyla is most likely linked to a general evolutionary response to sexual selection, either to increase one male's sperm or pollen success in competition with other males, or mediate male/female interactions. Therefore, although sperm and pollen are not homologous, we suggest that heteromorphism represents an example of convergence across kingdoms.  相似文献   

13.
14.
Airborne pollen grains in the atmosphere of Bozuyuk were investigated over a 2 yr period from 2000 to 2001 using a Durham sampler. A total number of pollen grains of 5 170 pollen grains belonging to 32 taxa were identified and recorded along with some unidentified pollen grains. Of all the pollen grains, 78.66% were arboreal, 19.20% were non-arboreal, and 2.12% were unidentified. The majority of pollen grains investigated were Pinus, Platanus, Quercus, Cupressaceae, Poaceae, Fagus, Salix, Rosaceae, Urticaceae, Asteraceae, and Chenopodiaceae. The maximum number of pollen grains was recorded in May.  相似文献   

15.

Background

The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution.

Methods and Main Findings

Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests.

Conclusions

Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism.  相似文献   

16.
Recent studies of pollen exchange between neighboring populations of plants have shown that interpopulation gene flow can proceed over much greater distances and at higher rates than hitherto believed. This means that the escape of engineered genes from crop plants to their wild relatives is not only possible, but also likely. The development of containment strategies, such as extra modifications for increased self-fertilization and decreased pollen longevity in engineered crop plants, will be necessary to safeguard against such escape.  相似文献   

17.
Mohammed H. Halwagy 《Grana》2013,52(6):333-339
The amount of airborne pollen in Kuwait was sampled daily over a twelve year period using a Hirst volumetric spore trap. The pollen was identified and expressed at the mean number m-33 day-1. Pollen occurs throughout the year but the concentration of the various pollen types varied from year-to-year and from season-to-season. The highest counts were in 1978, and the lowest in 1986. This latter low value is the result of prolonged drought, intensive human interference and continuous grazing. The highest counts are recorded in the spring (April-May) and the autumn (September-October). The pollen spectrum comprises mainly: Chenopodiaceae, Prosopis, Cyperus, Poaceae, Plantago and Brassicaceae. Poaceae pollen is abundant during the spring and the high valves coincide with the flowering season of the annual and perennial grass species. Cyperus is also abundant in the spring (April-May) the major source being the perennial sedge, Cyperus conglomeratus. Chenopodiaceae dominates from June to November with the highest peak in September and October. The majority of the species belonging to this family are perennials which flower during summer and autumn. Prosopis shows 2 peaks: a lower one in May-June and a higher one in October. A calendar of airborne pollen grain is presented. These results coulf be of use in allergy cases in Kuwait and possibly also in adjacent countries (S. Iraq, NE Saudi Arabia).  相似文献   

18.
Summary During 1982 – 1991 pollen deposition in the centre of Cracow (southern Poland) was investigated using the gravimetric method. 32 taxa of the 84 identified were taken into consideration, and nearly all of them can be allergenic. The beginning of mass pollen fall was observed in the second decade of March, and the third decade of September saw the completion of the yearly cycle of abundant appearance of pollen in the aeroplankton. Tree pollen dominates quantitatively.  相似文献   

19.
The variation in airborne pollen concentration of the Zonguldak region.Turkey was studied for two consecutive years 2001-2002 using a Durham sampler.During this period.a total of 61 304 pollen grains belonging to 43 taxa were recorded.Of these 43 taxa.26 belonged to arboreal and 17 to nonarboreal plants.The main pollen types were Pinaceae,Populus,Carpinus,Betula,Corylus,Fagus orientalis,Castanea sativa,AInus glutinosa,Quercus,Cupressaceae,Chenopodiaceae and Gramineae.representing 96.7%of the pollen spectrum.Pollen concentration reached the highest level in March.  相似文献   

20.
A pollen calendar has been constructed for Malaga (Southern Spain) based on the data obtained during 5 years (1991–95) using a Burkard spore trap set up approximately 1 km west of the city. The calendar only reflects taxa which showed a 10-day mean pollen concentration equal to or greater than 1 grain of pollen/m3 of air. Twenty nine taxa are included, of which the three commonest (Olea europaea, Cupressaceae andQuercus) represent approximately 54% of the total annual count and the following four (Chenopodiaceae-Amaranthaceae, Gramineae, Urticaceae andPlantago) represent 21.3%. The greatest diversity of pollen types occurs during Spring and the highest concentrations from February to June, when approximately 85% of the total annual pollen is registered. Several peaks occur during the year principally due to Cupressaceae in February,Quercus in April,Olea europaea in May andCasuarina in October, although substantial quantities of Urticaceae, Chenopodiaceae-Amaranthaceae,Plantago and Gramineae are also detected in April and May. The pollination of important allergy-producing taxa such as olive and grass takes place earlier in Malaga than in cities more inland, so that the data presented here may be useful in predicting the beginning of the pollination season of these localities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号