首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100−200 nm) and long distances (up to 600−800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants.  相似文献   

2.
Whereas the transfer of Listeria from surfaces to foods and vice versa has been well documented, little is known about the mechanism of bacterial transfer. The objective of this work is to gain a better understanding of the forces involved in listerial biofilms adhesion using atomic force microscopy (AFM). L. monocytogenes Scott A was grown as biofilms on stainless steel surfaces by inoculating stainless steel coupons with Listeria and incubating the coupons for 48 h at 32 °C with a diluted 1:20 tryptic soy broth. After growth, biofilms were equilibrated over saturated salt solutions at a constant relative humidity (%RH) before measurement of adhesion forces using AFM. The effects of contact time, loading force, and biofilm relative humidity (%RH) suggested that neither contact time, loading force nor biofilm %RH had a significant effect on biofilm adhesiveness at a cellular level (P > 0.05). In a second set of experiments, the influence of material type on biofilm adhesiveness was evaluated using two different colloidal probes (SiO2 and polyethylene). Results showed that the maximum pull-off force and retraction work needed to retract the cantilever for glass (−85.42 nN and 1.610−15 J, respectively) were significantly lower than those of polyethylene (−113.38 nN and 2.7 × 10–15 J, respectively; P < 0.001). The results of this study suggest that Listeria biofilms adhere more strongly to hydrophobic surfaces than hydrophilic surfaces when measured at a cellular level. These results provide important insights that could lead to new ways to remediate and avoid listerial biofilm formation in the food industry.  相似文献   

3.
Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force.  相似文献   

4.
The roles of lipopolysaccharides (LPS) and extracellular polymers (ECP) on the adhesion of Pseudomonas aeruginosa PAO1 (expresses the A-band and B-band of O antigen) and AK1401 (expresses the A-band but not the B-band) to silicon were investigated with atomic force microscopy (AFM) and related to biopolymer physical properties. Measurement of macroscopic properties showed that strain AK1401 is more negatively charged and slightly more hydrophobic than strain PAO1 is. Microscopic AFM investigations of individual bacteria showed differences in how the biopolymers interacted with silicon. PAO1 showed larger decay lengths in AFM approach cycles, suggesting that the longer polymers on PAO1 caused greater steric repulsion with the AFM tip. For both bacterial strains, the long-range interactions we observed (hundreds of nanometers) were inconsistent with the small sizes of LPS, suggesting that they were also influenced by ECP, especially polysaccharides. The AFM retraction profiles provide information on the adhesion strength of the biopolymers to silicon (Fadh). For AK1401, the adhesion forces were only slightly lower (Fadh = 0.51 nN compared to 0.56 nN for PAO1), but the adhesion events were concentrated over shorter distances. More than 90% of adhesion events for AK1401 were at distances of <600 nm, while >50% of adhesion events for PAO1 were at distances of >600 nm. The sizes of the observed molecules suggest that the adhesion of P. aeruginosa to silicon was controlled by ECP, in addition to LPS. Steric and electrostatic forces each contributed to the interfacial interactions between P. aeruginosa and the silicon surface.  相似文献   

5.
Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM). In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.  相似文献   

6.
Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.  相似文献   

7.
Atomic force microscopy (AFM) is used to characterize the structure and interactions of clathrin triskelia. Time sequence images of individual, wet triskelia resting on mica surfaces clearly demonstrate conformational fluctuations of the triskelia. AFM of dried samples yields images having nanometric resolution comparable to that obtainable by electron microscopy of shadowed samples. Increased numbers of triskelion dimers and assembly intermediates, as well as structures having dimensions similar to those of clathrin cages, are observed when the triskelia were immersed in a low salt, low pH buffer. These entities have been quantified by AFM protein volume computation.

Structured summary

MINT-7299119, MINT-7299136:Clathrin (uniprotkb:P49951) and Clathrin (uniprotkb:P49951) bind (MI:0407) by atomic force microscopy (MI:0872)  相似文献   

8.
An atomic force microscope has been used to study the adhesion of Bacillus mycoides spores to a hydrophilic glass surface and a hydrophobic-coated glass surface. AFM images of spores attached to the hydrophobic-coated mica surface allowed the measurement of spore dimensions in an aqueous environment without desiccation. The spore exosporium was observed to be flexible and to promote the adhesion of the spore by increasing the area of spore contact with the surface. Results from counting procedures using light microscopy matched the density of spores observed on the hydrophobic-coated glass surface with AFM. However, no spores were observed on the hydrophilic glass surface with AFM, a consequence of the weaker adhesion of the spores at this surface. AFM was also used to quantify directly the interactions of B. mycoides spores at the two surfaces in an aqueous environment. The measurements used "spore probes" constructed by immobilizing a single spore at the apex of a tipless AFM cantilever. The data showed that stretching and sequential bond breaking occurred as the spores were retracted from the hydrophilic glass surface. The greatest spore adhesion was measured at the hydrophobic-coated glass surface. An attractive force on the spores was measured as the spores approached the hydrophobic-coated surface. At the hydrophilic glass surface, only repulsive forces were measured during the approach of the spores. The AFM force measurements were in qualitative agreement with the results of a hydrodynamic shear adhesion assay that used a spinning disk technique. Quantitatively, AFM measurements of adhesive force were up to 4 x 10(3) times larger than the estimates made using the spinning disk data. This is a consequence of the different types of forces applied to the spore in the different adhesion assays. AFM has provided some unique insights into the interactions of spores with surfaces. No other instrument can make such direct measurements for single microbiological cells.  相似文献   

9.
Atomic force microscopy (AFM) has become a powerful tool for measuring material properties in biology and imposing mechanical boundary conditions on samples from single molecules to cells and tissues. Constant force or constant height can be maintained in an AFM experiment through feedback control of cantilever deflection, known respectively as a ‘force clamp’ or ‘position clamp’. However, stiffness, the third variable in the Hookean relation F = kx that describes AFM cantilever deflection, has not been dynamically controllable in the same way. Here we present and demonstrate a ‘stiffness clamp’ that can vary the apparent stiffness of an AFM cantilever. This method, employable on any AFM system by modifying feedback control of the cantilever, allows rapid and reversible tuning of the stiffness exposed to the sample in a way that can decouple the role of stiffness from force and deformation. We demonstrated the AFM stiffness clamp on two different samples: a contracting fibroblast cell and an expanding polyacrylamide hydrogel. We found that the fibroblast, a cell type that secretes and organizes the extracellular matrix, exhibited a rapid, sub-second change in traction rate (dF/dt) and contraction velocity (dx/dt) in response to step changes in stiffness between 1–100 nN/µm. This response was independent of the absolute contractile force and cell height, demonstrating that cells can react directly to changes in stiffness alone. In contrast, the hydrogel used in our experiment maintained a constant expansion velocity (dx/dt) over this range of stiffness, while the traction rate (dF/dt) changed with stiffness, showing that passive materials can also behave differently in different stiffness environments. The AFM stiffness clamp presented here, which is applicable to mechanical measurements on both biological and non-biological samples, may be used to investigate cellular mechanotransduction under a wide range of controlled mechanical boundary conditions.  相似文献   

10.
To date, nanoscale imaging of the morphological changes and adhesion force of CD4+ T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4+ T cells. The AFM images revealed that the volume of activated CD4+ T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4+ T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.  相似文献   

11.
Cooperative (simultaneous) breakage of multiple adhesive bonds has been proposed as a mechanism for enhanced binding strength between adhesion molecules on apposing cell surfaces. In this report, we used the atomic force microscopy (AFM) to study how changes in binding affinity and separation rate of force-induced ligand-receptor dissociation affect binding cooperativity. The AFM force measurements were carried out using (strept)avidin-functionalized cantilever tips and biotinylated agarose beads under conditions where multiple (strept)avidin-biotin linkages were formed following surface contact. At slow surface separation of the AFM cantilever from the bead's surface, the (strept)avidin-biotin linkages appeared to rupture sequentially. Increasing the separation rate from 210 to 1950 nm/s led to a linear increase in the average rupture force. Moreover, force histograms revealed a quantized force distribution that shifted toward higher values with increasing separation rate. In measurements of streptavidin-iminobiotin adhesion, the force distribution also shifted toward higher values when the buffer was adjusted to a higher pH to raise the binding affinity. Together, these results demonstrate that the cooperativity of ligand-receptor bonds is significantly enhanced by increases in surface separation rate and/or binding affinity.  相似文献   

12.
Measuring the visco-elastic properties of biological macromolecules constitutes an important step towards the understanding of dynamic biological processes, such as cell adhesion, muscle function, or plant cell wall stability. Force spectroscopy techniques based on the atomic force microscope (AFM) are increasingly used to study the complex visco-elastic response of (bio-)molecules on a single-molecule level. These experiments either require that the AFM cantilever is actively oscillated or that the molecule is clamped at constant force to monitor thermal cantilever motion. Here we demonstrate that the visco-elasticity of single bio-molecules can readily be extracted from the Brownian cantilever motion during conventional force-extension measurements. It is shown that the characteristics of the cantilever determine the signal-to-noise (S/N) ratio and time resolution. Using a small cantilever, the visco-elastic properties of single dextran molecules were resolved with a time resolution of 8.3 ms. The presented approach can be directly applied to probe the dynamic response of complex bio-molecular systems or proteins in force-extension experiments. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
We investigated the adhesive mucilage and mechanism of cell‐substratum adhesion of two benthic raphid diatoms, the marine species Craspedostauros australis E. J. Cox and the freshwater species Pinnularia viridis (Nitzsch) Ehrenberg. SEM images of P. viridis and C. australis cells revealed the presence of multistranded tethers that appear to arise along the raphe openings and extend for a considerable distance from the cell before forming a “holdfast‐like” attachment with the substratum. We propose that the tethers result from the elongation/stretching of composite adhesive mucilage strands secreted from raphes during the onset of cell adhesion and reorientation. Atomic force microscopy (AFM) force measurements reveal that the adhesive strands originating from the nondriving raphe of live C. australis and P. viridis are highly extensible and accumulate to form tethers. During force measurements tethers can be chemically stained and are seen to extend between the cantilever tip and a cell during elongation and relaxation. In most cases, AFM force measurements recorded an interaction with a number of adhesive strands that are secreted from the raphe. The force curves of C. australis and P. viridis revealed a sawtooth pattern, suggesting the successive unbinding of modular domains when the adhesive strands were placed under stress. In addition, we applied the “fly‐fishing” technique that allowed the cantilever, suspended a distance above the cell, to interact with single adhesive strands protruding from the raphe. These force curves revealed sawtooth patterns, although the binding forces recorded were in the range for single molecule interactions.  相似文献   

14.
Atomic force microscopy (AFM), in conjunction with colloid probe, coated colloid probe and cell probe techniques, has been used to measure directly the adhesive force between a polystyrene sphere (diameter 11 μm), protein bovine serum albumin (BSA) and a yeast cell, and two different membranes. These were polymeric ultrafiltration membranes of similar MWCO (4000 Da) but of different materials (ES 404 and XP 117, PCI Membrane Systems Ltd (UK)). The colloid probe was created by immobilising a polystyrene sphere onto a tipless V‐shaped AFM cantilever. The coated probe was made by adsorbing BSA on a 5 μm silica colloid, while immobilising a single yeast cell on such a tipless cantilever created the cell probe. Measurements were made in 10–2 M NaCl solution. It was found for polystyrene, protein and cell systems that the adhesive force at the ES 404 membrane was greater than that at the XP 117 membrane. The paper shows that the colloid probe, coated colloid probe and cell probe techniques can provide useful means of directly quantifying the adhesion of both inorganic and biological materials to membrane surfaces.  相似文献   

15.
Microbial infections of medical implants occur in more than 2 million surgical cases each year in the United States alone. These increase patient morbidity and mortality, as well as patient cost and recovery time. Many treatments are available, but none are guaranteed to remove the infection. In many cases, the device infections are caused by the adhesion of microbes to the implant, ensuing growth, pathogenesis, and dissemination. The purpose of this work is to examine the initial events in microbial adhesion by simulating the approach and contact between a planktonic cell, immobilized on an atomic force microscope (AFM) cantilever, and a biomaterial or biofilm substrate. The two model microbes used in this study, Candida parapsilosis (ATCC 90018) and Pseudomonas aeruginosa (ATCC 10145), were chosen for both their clinical relevance and their ease of acquisition and handling in the laboratory setting. Attractive interactions exist between C. parapsilosis and both unmodified silicone rubber and P. aeruginosa biofilms. Using C. parapsilosis cells immobilized on AFM cantilevers with a silicone substrate, we have measured attractive forces of 4.3 ± 0.25 nN in the approach portion of the force cycle. On P. aeruginosa biofilms, the magnitude of the attractive force decreases to 2.0 ± 0.40 nN and is preceded by a 2.0-nN repulsion at approximately 75 nm from the cell surface. These data suggest that C. parapsilosis may adhere to both silicone rubber and P. aeruginosa biofilms, possibly contributing to patient morbidity and mortality. Characterization of cell-biomaterial and cell-cell interactions allows for a quantitative link between the physicomechanical and physicochemical properties of implant materials and the nanoscale interactions leading to microbial colonization and infection.  相似文献   

16.
We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of lp = 0.31 ± 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of τ = 7.9 ± 4.9 s and a reaction bond length of xβ = 0.31 ± 0.08 nm. Whereas the xβ-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.  相似文献   

17.
We developed a method to measure the rupture forces between antibody and antigen by atomic force microscopy (AFM). Previous studies have reported that in the measurement of antibody–antigen interaction using AFM, the specific intermolecular forces are often obscured by nonspecific adhesive binding forces between antibody immobilized cantilever and substrate surfaces on which antigen or nonantigen are fixed. Here, we examined whether detergent and nonreactive protein, which have been widely used to reduce nonspecific background signals in ordinary immunoassay and immunoblotting, could reduce the nonspecific forces in the AFM measurement. The results showed that, in the presence of both nonreactive protein and detergent, the rupture forces between anti-ferritin antibodies immobilized on a tip of cantilever and ferritin (antigen) on the substrate could be successfully measured, distinguishing from nonspecific adhesive forces. In addition, we found that approach/retraction velocity of the AFM cantilever was also important in the reduction of nonspecific adhesion. These insights will contribute to the detection of specific molecules at nanometer scale region and the investigation of intermolecular interaction by the use of AFM.  相似文献   

18.
The impact of hyperglycemia on adhesion between lung carcinoma cells (A549) and pulmonary human aorta endothelial cells (PHAEC) was studied using the single‐cell force spectroscopy. Cancer cells were immobilized on a tipless Atomic Force Microscopy (AFM) cantilever and a single layer of endothelial cells was prepared on a glass slide. The measured force‐distance curves provided information about the detachment force and about the frequency of specific ligand‐receptor rupture events. Measurements were performed for different times of short term (up to 2 h) and prolonged hyperglycemia (3 h ‐ 24 h). Single‐cell force results were correlated with the expression of cell adhesion molecules (intercellular adhesion molecule, P‐selectin) and with the length and density of the PHAECs glycocalyx layer, which were measured by AFM nanoindentation. For short‐term hyperglycemia, we observed a statistically significant increase of the adhesion parameters that was accompanied by an increase of the glycocalyx length and expression of P‐selectin. Removal of hyaluronic acid from PHAECs glycocalyx significantly decreased the adhesion parameters, which indicates that hyaluronic acid has a strong impact on adhesion in A549/PHAEC system in short term of hyperglycemia. For prolonged hyperglycemia, the most significant increase of adhesion parameters was observed for 24 hours and this phenomenon correlated with the expression of adhesion molecules and a decrease of the glycocalyx length. Taking together, presented data indicate that both mechanical and structural properties of the endothelial glycocalyx strongly modulate the adhesion in the A549/PHAEC system.  相似文献   

19.
Surface potential is a commonly overlooked physical characteristic that plays a dominant role in the adhesion of microorganisms to substrate surfaces. Kelvin probe force microscopy (KPFM) is a module of atomic force microscopy (AFM) that measures the contact potential difference between surfaces at the nano-scale. The combination of KPFM with AFM allows for the simultaneous generation of surface potential and topographical maps of biological samples such as bacterial cells. Here, we employ KPFM to examine the effects of surface potential on microbial adhesion to medically relevant surfaces such as stainless steel and gold. Surface potential maps revealed differences in surface potential for microbial membranes on different material substrates. A step-height graph was generated to show the difference in surface potential at a boundary area between the substrate surface and microorganisms. Changes in cellular membrane surface potential have been linked with changes in cellular metabolism and motility. Therefore, KPFM represents a powerful tool that can be utilized to examine the changes of microbial membrane surface potential upon adhesion to various substrate surfaces. In this study, we demonstrate the procedure to characterize the surface potential of individual methicillin-resistant Staphylococcus aureus USA100 cells on stainless steel and gold using KPFM.  相似文献   

20.
Urinary tract infections are the most common urologic disease in the United States and one of the most common bacterial infections of any organ system. Biofilms persist in the urinary tract and on catheter surfaces because biofilm microorganisms are resistant to host defense mechanisms and antibiotic therapy. The first step in the establishment of biofilm infections is bacterial adhesion; preventing bacterial adhesion represents a promising method of controlling biofilms. Evidence suggests that capsular polysaccharides play a role in adhesion and pathogenicity. This study focuses on the role of physiochemical and specific binding interactions during adhesion of colanic acid exopolysaccharide mutant strains. Bacterial adhesion was evaluated for isogenic uropathogenic Escherichia coli strains that differed in colanic acid expression. The atomic force microscope (AFM) was used to directly measure the reversible physiochemical and specific binding interactions between bacterial strains and various substrates as bacteria initially approach the interface. AFM results indicate that electrostatic interactions were not solely responsible for the repulsive forces between the colanic acid mutant strains and hydrophilic substrates. Moreover, hydrophobic interactions were not found to play a significant role in adhesion of the colanic acid mutant strains. Adhesion was also evaluated by parallel-plate flow cell studies in comparison to AFM force measurements to demonstrate that prolonged incubation times alter bacterial adhesion. Results from this study demonstrate that the capsular polysaccharide colanic acid does not enhance bacterial adhesion but rather blocks the establishment of specific binding as well as time-dependent interactions between uropathogenic E. coli and inert substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号