首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prevalence of type 2 diabetes (T2DM) is increasing, creating a need for T2DM animal models for the study of disease pathogenesis, prevention, and treatment. The purpose of this project was to develop a rat model of T2DM that more closely models the pathophysiology of T2DM in humans. The model was created by crossing obese Sprague-Dawley rats with insulin resistance resulting from polygenic adult-onset obesity with Zucker diabetic fatty-lean rats that have a defect in pancreatic beta-cell function but normal leptin signaling. We have characterized the model with respect to diabetes incidence; age of onset; longitudinal measurements of glucose, insulin, and lipids; and glucose tolerance. Longitudinal fasting glucose and insulin data demonstrated progressive hyperglycemia (with fasting and fed glucose concentrations >250 and >450 mg/dl, respectively) after onset along with hyperinsulinemia resulting from insulin resistance at onset followed by a progressive decline in circulating insulin concentrations, indicative of beta-cell decompensation. The incidence of diabetes in male and female rats was 92 and 43%, respectively, with an average age of onset of 6 mo in males and 9.5 mo in females. Results from intravenous glucose tolerance tests, pancreas immunohistochemistry, and islet insulin content further support a role for beta-cell dysfunction in the pathophysiology of T2DM in this model. Diabetic animals also exhibit glycosuria, polyuria, and hyperphagia. Thus diabetes in the UC Davis-T2DM rat is more similar to clinical T2DM in humans than in other existing rat models and provides a useful model for future studies of the pathophysiology, treatment, and prevention of T2DM.  相似文献   

2.
采用荧光定量PCR技术对自发性和膳食诱发性T2DM食蟹猴外周血白细胞中36个糖尿病相关基因的表达水平进行分析。在36个基因中,糖尿病组的G6PC、CCR2B、CTLA4等19个基因的表达量与对照组相比存在显著差异(P<0.05),且这些基因在诱发组和自发组中的表达模式基本一致。36个基因中,诱发组基因的表达量普遍高于自发组,但大部分基因表达量在两组中差异不显著,表明诱发性和自发性食蟹猴T2DM模型均可作为糖尿病研究较理想的动物模型。因此,通过高能量膳食诱导的食蟹猴糖尿病模型可以替代自发的糖尿病猴,且基因表达量的变化可为疾病的诊断和治疗提供帮助。  相似文献   

3.
4.
Calcium homeostasis and modulation of synaptic plasticity in the aged brain   总被引:1,自引:1,他引:1  
Foster TC 《Aging cell》2007,6(3):319-325
The level of intracellular Ca2+ plays a central role in normal and pathological signaling within and between neurons. These processes involve a cascade of events for locally raising and lowering cytosolic Ca2+. As the mechanisms for age-related alteration in Ca2+ dysregulation have been illuminated, hypotheses concerning Ca2+ homeostasis and brain aging have been modified. The idea that senescence is due to pervasive cell loss associated with elevated resting Ca2+ has been replaced by concepts concerning changes in local Ca2+ levels associated with neural activity. This article reviews evidence for a shift in the sources of intracellular Ca2+ characterized by a diminished role for N-methyl-D-aspartate receptors and an increased role for intracellular stores and voltage-dependent Ca2+ channels. Physiological and biological models are outlined, which relate a shift in Ca2+ regulation with changes in cell excitability and synaptic plasticity, resulting in a functional lesion of the hippocampus.  相似文献   

5.
Type 4 glutathione peroxidase (GPx4) is a widely expressed mammalian selenoenzyme known to play a vital role in cytoprotection against lipid hydroperoxide (LOOH)-mediated oxidative stress and regulation of oxidative signaling cascades. Since prokaryotes are not equipped to express mammalian selenoproteins, preparation of recombinant GPx4 via commonly used bacterial transformation is not feasible. A published procedure for isolating the enzyme from rat testis employs affinity chromatography on bromosulfophthalein–glutathione-linked agarose as the penultimate step in purification. Since this resin is no longer commercially available and preparing it in satisfactory operational form is tedious, we have developed an alternative purification approach based on sequential anion exchange, size exclusion, and cation exchange chromatography. Final preparations were found to be essentially homogeneous in GPx4 (Mr  20 kDa), as demonstrated by SDS–PAGE with protein staining and immunoblotting. Specific enzymatic activity was determined using a novel thin-layer chromatographic approach in which the kinetics of phosphatidylcholine hydroperoxide loss or cholesterol-7α-hydroperoxide loss was monitored. A >400-fold purification of active enzyme has been attained. The relatively straightforward isolation procedure described should prove valuable for further functional studies on GPx4, e.g. how its ability to catalyze LOOH reduction compares with that of other LOOH detoxifying enzymes.  相似文献   

6.
7.
Type 2 diabetes mellitus (T2DM) is a rapidly expanding public epidemic and frequently results in severe vascular complications. In an attempt to find anti-diabetic agents, we report herein on the isolation, structural elucidation and bioactivity of nine friedelane-type triterpenes (19) and twenty two known ones (1031) from the root barks of Celastrus vulcanicola and Maytenus jelskii. Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques. Two compounds from this series (1 and 3) exhibited increased insulin-mediated signalling, which suggests these friedelane triterpenes have potential therapeutic use in insulin resistant states.  相似文献   

8.
9.
10.
The number of people suffering from diabetes is hastily increasing and the condition is associated with altered brain glucose homeostasis. Brain glycogen is located in astrocytes and being a carbohydrate reservoir it contributes to glucose homeostasis. Furthermore, glycogen has been indicated to be important for proper neurotransmission under normal conditions. Previous findings from our laboratory suggested that glucose metabolism was reduced in type 2 diabetes, and thus we wanted to investigate more specifically how brain glycogen metabolism contributes to maintain energy status in the type 2 diabetic state. Also, our objective was to elucidate the contribution of glycogen to support neurotransmitter glutamate and GABA homeostasis. A glycogen phosphorylase (GP) inhibitor was administered to Sprague-Dawley (SprD) and Zucker Diabetic Fatty (ZDF) rats in vivo and after one day of treatment [1-13C]glucose was used to monitor metabolism. Brain levels of 13C labeling in glucose, lactate, alanine, glutamate, GABA, glutamine and aspartate were determined. Our results show that inhibition of brain glycogen metabolism reduced the amounts of glutamate in both the control and type 2 diabetes models. The reduction in glutamate was associated with a decrease in the pyruvate carboxylase/pyruvate dehydrogenase ratio in the control but not the type 2 diabetes model. In the type 2 diabetes model GABA levels were increased suggesting that brain glycogen serves a role in maintaining a proper ratio between excitatory and inhibitory neurotransmitters in type 2 diabetes. Both the control and the type 2 diabetic states had a compensatory increase in glucose-derived 13C processed through the TCA cycle following inhibition of glycogen degradation. Finally, it was indicated that the type 2 diabetes model might have an augmented necessity for compensatory upregulation at the glycolytic level.  相似文献   

11.
Osteoarthritis affects one in eight American adults over the age of 25 y and is a leading cause of chronic disability in the US. Translational research to investigate treatments for this naturally occurring joint disease requires an appropriate animal model. The authors conducted a retrospective study to assess the potential of naturally occurring osteoarthritis in the domestic rabbit as a model of the human disease. Analysis of radiographic images showed that the presence and severity of osteoarthritis were significantly influenced by both age and body weight. The most commonly affected joints were the knee and the hip. The findings reported here suggest that the rabbit is an excellent model of spontaneously arising osteoarthritis that may be useful in translational research pertaining to the human disease.  相似文献   

12.
Deficiency of IQGAP2, a scaffolding protein expressed primarily in liver leads to rearrangements of hepatic protein compartmentalization and altered regulation of enzyme functions predisposing development of hepatocellular carcinoma and diabetes. Employing a systems approach with proteomics, metabolomics and fluxes characterizations, we examined the effects of IQGAP2 deficient proteomic changes on cellular metabolism and the overall metabolic phenotype. Iqgap2 ?/?mice demonstrated metabolic inflexibility, fasting hyperglycemia and obesity. Such phenotypic characteristics were associated with aberrant hepatic regulations of glycolysis/gluconeogenesis, glycogenolysis, lipid homeostasis and futile cycling corroborated with corresponding proteomic changes in cytosolic and mitochondrial compartments. IQGAP2 deficiency also led to truncated TCA-cycle, increased anaplerosis, increased supply of acetyl-CoA for de novo lipogenesis, and increased mitochondrial methyl-donor metabolism necessary for nucleotides synthesis. Our results suggest that changes in metabolic networks in IQGAP2 deficiency create a hepatic environment of a ‘pre-diabetic’ phenotype and a predisposition to non-alcoholic fatty liver disease which has been linked to the development of hepatocellular carcinoma.  相似文献   

13.
Alzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD. In addition, insulin therapy has been shown to improve memory in patients with cognitive decline. In this study, we report the first examination of body composition, peripheral insulin sensitivity, and glucose tolerance in relation to behavioral assessments of learning, memory, and anxiety in the TgF344-AD rat model of AD. Results from glucose and insulin tolerance tests show that female TgF344-AD rats exhibit impaired glucose clearance and reduced insulin sensitivity at both 9 and 12 months of age, while males display no differences at 9 months and even improved glucose clearance at 12 months. Results from the Morris Water Maze assessment of learning and memory reveal that male TgF344-AD rats display impairments at both 9 and 12 months of age, while female TgF344-AD rats only show impairments at 12 months. Furthermore, results from open field and elevated plus maze tests suggest that female TgF344-AD rats display increased anxiety at 9 months of age; however, no differences were detected in males or at 12 months of age. Overall, our findings suggest that impairments in metabolism, commonly associated with type 2 diabetes, occur before or simultaneously with cognitive decline and anxiety in a sexually dimorphic manner in the TgF344-AD rat model.  相似文献   

14.
Male Sprague-Dawley rats rendered diabetic by streptozotocin injection presented 10 and 20% decreases in total hepatic Mg2+ content at 4 and 8 wk, respectively, following diabetes onset. This decrease was associated with a parallel decrease in K+ and ATP content and an increase in Na+ level. In diabetic liver cells, the Mg2+ extrusion elicited by alpha1-adrenoceptor stimulation was markedly reduced compared with nondiabetic livers, whereas that induced by beta-adrenoceptor stimulation was unaffected. In addition, diabetic hepatocytes did not accumulate Mg2+ following stimulation of protein kinase C pathway by vasopressin, diacylglycerol analogs, or phorbol 12-myristate 13-acetate derivates despite the reduced basal content in cellular Mg2+. Experiments performed in purified plasma membrane from diabetic livers located the defect at the level of the bidirectional Na+/Mg2+ exchanger operating in the basolateral domain of the hepatocyte cell membrane, which could extrude but not accumulate Mg2+ in exchange for Na+. The impairment of Mg2+ uptake mechanism, in addition to the decrease in cellular ATP level, can contribute to explaining the decrease in liver Mg2+ content observed under diabetic conditions.  相似文献   

15.
In a previous communication we reported that glucose deprivation from KHRB medium resulted in a marked stimulation of Ca2+ uptake by brain tissue, suggesting a relationship between glucose and Ca2+ homeostasis in brain tissue [17]. Experiments were carried out to investigate the significance of glucose in Ca2+ transport in brain cells. The replacement of glucose with either D-methylglucoside or 2-deoxyglucose, non-metabolizable analogues of glucose, resulted in stimulation of Ca2+ uptake just as by glucose deprivation. These data show that glucose metabolism rather than glucose transfer was necessary to stimulate Ca2+ uptake in brain tissue. Inhibition of glucose metabolism with either NaF, NaCN, or iodoacetate resulted in stimulation of Ca2+ uptake similar to that produced by glucose deprivation. These results lend further support for the concept that glucose metabolism is essential for Ca2+ homeostasis in brain. Anoxia promotes glucose metabolism through glycolytic pathway to keep up with the demand for ATP by cellular processes (the Pasteur effect). Incubation of brain slices under nitrogen gas did not alter Ca2+ uptake by brain tissue, as did glucose deprivation and the inhibitors of glucose metabolism. We conclude that glucose metabolism resulting in the synthesis of ATP is essential for Ca2+ homeostasis in brain. Verapamil and nifedipine which block voltage-gated Ca2+ channels, did not alter Ca2+ uptake stimulated by glucose deprivation, indicating that glucose deprivation-enhanced Ca2+ uptake was not mediated by Ca2+ channels. Tetrodotoxin which specifically blocks Na+ channels, abolished Ca2+ uptake enhanced by glucose deprivation, but had no effect on Ca2+ uptake in presence of glucose (controls). These results suggest that stimulation of Ca2+ uptake by glucose deprivation may be related to Na+ transfer via Na-Ca exchange in brain.  相似文献   

16.
17.
18.
The structure of naturally occurring anhydrovitamin A2 was elucidated as 3-hydroxyanhydroretinol from study of its u.v.--visible, i.r., n.m.r. and mass spectra. The structure has been confirmed by a chemical synthesis. Saccobranchus fossils, a freshwater fish, can convert 3-hydroxyretinol into 3-hydroxyanhydroretinol, which in turn is converted into-3-dehydroretinol. Chemical conversion of 3-hydroxyretinol into 3-dehydroretinol was also carried out.  相似文献   

19.
Calcium homeostasis and dichlorvos induced neurotoxicity in rat brain   总被引:3,自引:0,他引:3  
The present study was designed to investigate the possible effects of chronic dichlorvos exposure on the various aspects of calcium homeostasis in rat brain. Chronic dichlorvos administration caused significant rise in the intrasynaptosomal calcium levels. The activity of major calcium expelling enzyme i.e. Ca2+ ATPase was found to be declined. Also, the depolarization induced calcium uptake via voltage operated calcium channels increased significantly. Concomitant to the increase in intrasynaptosomal calcium, calpain activity was found to be increased. The results presented herein, indicate that the toxic effects of dichlorvos could be mediated through modifications in the intracellular calcium homeostasis which may lead to impaired neuronal function.  相似文献   

20.
Regulation of calpain activity in rat brain with altered Ca2+ homeostasis   总被引:1,自引:0,他引:1  
Activation of calpain occurs as an early event in correlation with an increase in [Ca2+]i induced in rat brain upon treatment with a high salt diet for a prolonged period of time. The resulting sequential events have been monitored in the brain of normal and hypertensive rats of the Milan strain, diverging for a constitutive alteration in the level of [Ca2+]i found to be present in nerve cells of hypertensive animals. After 2 weeks of treatment, the levels of the plasma membrane Ca2+-ATPase and of native calpastatin are profoundly decreased. These degradative processes, more pronounced in the brain of hypertensive rats, are progressively and efficiently compensated in the brain of both rat strains by different incoming mechanisms. Along with calpastatin degradation, 15-kDa still-active inhibitory fragments are accumulated, capable of efficiently replacing the loss of native inhibitor molecules. A partial return to a more efficient control of Ca2+ homeostasis occurs in parallel, assured by an early increase in the expression of Ca2+-ATPase and of calpastatin, both producing, after 12 weeks of a high salt (sodium) diet, the restoration of almost original levels of the Ca2+ pump and of significant amounts of native inhibitor molecules. Thus, conservative calpastatin fragmentation, associated with an increased expression of Ca2+-ATPase and of the calpain natural inhibitor, has been demonstrated to occur in vivo in rat brain. This represents a sequential adaptive response capable of overcoming the effects of calpain activation induced by a moderate long term elevation of [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号