首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dong C  Qian Z  Jia P  Wang Y  Huang W  Li Y 《PloS one》2007,2(12):e1262

Background

The high-throughput genotyping chips have contributed greatly to genome-wide association (GWA) studies to identify novel disease susceptibility single nucleotide polymorphisms (SNPs). The high-density chips are designed using two different SNP selection approaches, the direct gene-centric approach, and the indirect quasi-random SNPs or linkage disequilibrium (LD)-based tagSNPs approaches. Although all these approaches can provide high genome coverage and ascertain variants in genes, it is not clear to which extent these approaches could capture the common genic variants. It is also important to characterize and compare the differences between these approaches.

Methodology/Principal Findings

In our study, by using both the Phase II HapMap data and the disease variants extracted from OMIM, a gene-centric evaluation was first performed to evaluate the ability of the approaches in capturing the disease variants in Caucasian population. Then the distribution patterns of SNPs were also characterized in genic regions, evolutionarily conserved introns and nongenic regions, ontologies and pathways. The results show that, no mater which SNP selection approach is used, the current high-density SNP chips provide very high coverage in genic regions and can capture most of known common disease variants under HapMap frame. The results also show that the differences between the direct and the indirect approaches are relatively small. Both have similar SNP distribution patterns in these gene-centric characteristics.

Conclusions/Significance

This study suggests that the indirect approaches not only have the advantage of high coverage but also are useful for studies focusing on various functional SNPs either in genes or in the conserved regions that the direct approach supports. The study and the annotation of characteristics will be helpful for designing and analyzing GWA studies that aim to identify genetic risk factors involved in common diseases, especially variants in genes and conserved regions.  相似文献   

2.

Background

Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.

Methodology/Principal Finding

Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.

Conclusion/Significance

This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.  相似文献   

3.

Purpose

To compare PubMed Clinical Queries and UpToDate regarding the amount and speed of information retrieval and users'' satisfaction.

Method

A cross-over randomized trial was conducted in February 2009 in Tehran University of Medical Sciences that included 44 year-one or two residents who participated in an information mastery workshop. A one-hour lecture on the principles of information mastery was organized followed by self learning slide shows before using each database. Subsequently, participants were randomly assigned to answer 2 clinical scenarios using either UpToDate or PubMed Clinical Queries then crossed to use the other database to answer 2 different clinical scenarios. The proportion of relevantly answered clinical scenarios, time to answer retrieval, and users'' satisfaction were measured in each database.

Results

Based on intention-to-treat analysis, participants retrieved the answer of 67 (76%) questions using UpToDate and 38 (43%) questions using PubMed Clinical Queries (P<0.001). The median time to answer retrieval was 17 min (95% CI: 16 to 18) using UpToDate compared to 29 min (95% CI: 26 to 32) using PubMed Clinical Queries (P<0.001). The satisfaction with the accuracy of retrieved answers, interaction with UpToDate and also overall satisfaction were higher among UpToDate users compared to PubMed Clinical Queries users (P<0.001).

Conclusions

For first time users, using UpToDate compared to Pubmed Clinical Querries can lead to not only a higher proportion of relevant answer retrieval within a shorter time, but also a higher users'' satisfaction. So, addition of tutoring pre-appraised sources such as UpToDate to the information mastery curricula seems to be highly efficient.  相似文献   

4.
5.
6.

Introduction

In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line.

Methods

We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb).

Results

Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival.

Conclusion

Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses.  相似文献   

7.
8.

Background

Accumulating evidence indicates aberrant DNA methylation is involved in gastric tumourigenesis, suggesting it may be a useful clinical biomarker for the disease. The aim of this study was to consolidate and summarize published data on the potential of methylation in gastric cancer (GC) risk prediction, prognostication and prediction of treatment response.

Methods

Relevant studies were identified from PubMed using a systematic search approach. Results were summarized by meta-analysis. Mantel-Haenszel odds ratios were computed for each methylation event assuming the random-effects model.

Results

A review of 589 retrieved publications identified 415 relevant articles, including 143 case-control studies on gene methylation of 142 individual genes in GC clinical samples. A total of 77 genes were significantly differentially methylated between tumour and normal gastric tissue from GC subjects, of which data on 62 was derived from single studies. Methylation of 15, 4 and 7 genes in normal gastric tissue, plasma and serum respectively was significantly different in frequency between GC and non-cancer subjects. A prognostic significance was reported for 18 genes and predictive significance was reported for p16 methylation, although many inconsistent findings were also observed. No bias due to assay, use of fixed tissue or CpG sites analysed was detected, however a slight bias towards publication of positive findings was observed.

Conclusions

DNA methylation is a promising biomarker for GC risk prediction and prognostication. Further focused validation of candidate methylation markers in independent cohorts is required to develop its clinical potential.  相似文献   

9.

Background

The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal.

Results

While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing.

Conclusion

These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses.  相似文献   

10.
11.
12.
13.

Background and Aims

Plant genotypic mixtures have the potential to increase yield stability in variable, often unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability remains limited. Field studies are constrained by environmental conditions which cannot be fully controlled and thus reproduced. A suitable model system would allow reproducible experiments on processes operating within crop genetic mixtures.

Methods

Phenotypically dissimilar genotypes of Arabidopsis thaliana were grown in monocultures and mixtures under high levels of competition for abiotic resources. Seed production, flowering time and rosette size were recorded.

Key Results

Mixtures achieved high yield stability across environments through compensatory interactions. Compensation was greatest when plants were under high levels of heat and nutrient stress. Competitive ability and mixture performance were predictable from above-ground phenotypic traits even though below-ground competition appeared to be more intense.

Conclusions

This study indicates that the mixing ability of plant genotypes can be predicted from their phenotypes expressed in a range of relevant environments, and implies that a phenotypic screen of genotypes could improve the selection of suitable components of genotypic mixtures in agriculture intended to be resilient to environmental stress.  相似文献   

14.

Background

While the gargantuan multi-nation effort of sequencing T. aestivum gets close to completion, the annotation process for the vast number of wheat genes and proteins is in its infancy. Previous experimental studies carried out on model plant organisms such as A. thaliana and O. sativa provide a plethora of gene annotations that can be used as potential starting points for wheat gene annotations, proven that solid cross-species gene-to-gene and protein-to-protein correspondences are provided.

Results

DNA and protein sequences and corresponding annotations for T. aestivum and 9 other plant species were collected from Ensembl Plants release 22 and curated. Cliques of predicted 1-to-1 orthologs were identified and an annotation enrichment model was defined based on existing gene-GO term associations and phylogenetic relationships among wheat and 9 other plant species. A total of 13 cliques of size 10 were identified, which represent putative functionally equivalent genes and proteins in the 10 plant species. Eighty-five new and more specific GO terms were associated with wheat genes in the 13 cliques of size 10, which represent a 65% increase compared with the previously 130 known GO terms. Similar expression patterns for 4 genes from Arabidopsis, barley, maize and rice in cliques of size 10 provide experimental evidence to support our model. Overall, based on clique size equal or larger than 3, our model enriched the existing gene-GO term associations for 7,838 (8%) wheat genes, of which 2,139 had no previous annotation.

Conclusions

Our novel comparative genomics approach enriches existing T. aestivum gene annotations based on cliques of predicted 1-to-1 orthologs, phylogenetic relationships and existing gene ontologies from 9 other plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1496-2) contains supplementary material, which is available to authorized users.  相似文献   

15.

Aim

To assess the role of mRNA accumulation in granulosa cells as the cause of low ovarian response among FMR1 premutation carriers undergoing pre-implantation genetic diagnosis (PGD).

Design

Case control study in an academic IVF unit. Twenty-one consecutive FMR1 premutation carriers and 15 control women were included. After oocyte retrieval the granulosa cells mRNA levels of FMR1 was measured using RT-PCR.

Results

In FMR1 premutation carriers, there was a significant non-linear association between the number of CGG repeats and the number of retrieved oocytes (p<0.0001) and a trend to granulosa cells FMR1 mRNA levels (p = 0.07). The lowest number of retrieved oocytes and the highest level of mRNA were seen in women with mid-size CGG repeats (80–120). A significant negative linear correlation was observed between the granulosa cells FMR1 mRNA levels and the number of retrieved oocytes (R2 linear = 0.231, P = 0.02).

Conclusion

We suggest that there is a no-linear association between the number of CGG repeats and ovarian function, resulting from an increased granulosa cells FMR1 mRNA accumulation in FMR1 carriers in the mid-range (80–120 repeats).  相似文献   

16.
17.

Background

Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function.

Methodology/Principal Findings

To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures.

Conclusion

These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号