首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report three individuals with a cranioskeletal malformation syndrome that we define as acrofacial dysostosis, Cincinnati type. Each individual has a heterozygous mutation in POLR1A, which encodes a core component of RNA polymerase 1. All three individuals exhibit varying degrees of mandibulofacial dysostosis, and two additionally have limb anomalies. Consistent with this observation, we discovered that polr1a mutant zebrafish exhibited cranioskeletal anomalies mimicking the human phenotype. polr1a loss of function led to perturbed ribosome biogenesis and p53-dependent cell death, resulting in a deficiency of neural-crest-derived skeletal precursor cells and consequently craniofacial anomalies. Our findings expand the genotypic and phenotypic heterogeneity of congenital acrofacial disorders caused by disruption of ribosome biogenesis.  相似文献   

2.
Ribosome biogenesis is a cell-essential process that influences cell growth, proliferation, and differentiation. How ribosome biogenesis impacts development, however, is poorly understood. Here, we establish a link between ribosome biogenesis and gonadogenesis in Caenorhabditis elegans that affects germline proliferation and patterning. Previously, we determined that pro-1(+)activity is required in the soma--specifically, the sheath/spermatheca sublineage--to promote normal proliferation and prevent germline tumor formation. Here, we report that PRO-1, like its yeast ortholog IPI3, influences rRNA processing. pro-1 tumors are suppressed by mutations in ncl-1 or lin-35/Rb, both of which elevate pre-rRNA levels. Thus, in this context, lin-35/Rb acts as a soma-autonomous germline tumor promoter. We further report the characterization of two additional genes identified for their germline tumor phenotype, pro-2 and pro-3, and find that they, too, encode orthologs of proteins involved in ribosome biogenesis in yeast (NOC2 and SDA1, respectively). Finally, we demonstrate that depletion of additional C. elegans orthologs of yeast ribosome biogenesis factors display phenotypes similar to depletion of progenes. We conclude that the C. elegans distal sheath is particularly sensitive to alterations in ribosome biogenesis and that ribosome biogenesis defects in one tissue can non-autonomously influence proliferation in an adjacent tissue.  相似文献   

3.
Ribosome biogenesis is essential for the cell growth and division. Disruptions in ribosome biogenesis result in developmental defects and a group of diseases, known as ribosomopathies. Here, we report a mutation in zebrafish urb1, which encodes an essential ribosome biogenesis protein. The urb1 cq31 mutant exhibits hypoplastic digestive organs, which is caused by impaired cell proliferation with the differentiation of digestive organ progenitors unaffected. Knockdown of mtor or raptor leads to similar hypoplastic phenotypes and reduced expression of urb1 in the digestive organs. Overexpression of Urb1 results in overgrowth of digestive organs, and can efficiently rescue the hypoplastic liver and pancreas in the mtor and raptor morphants. Reduced syntheses of free ribosomal subunits and impaired assembly of polysomes are observed in the urb1 mutant as well as in the mtor and raptor morphants, which can be rescued by the Urb1 overexpression. These data demonstrate that Urb1 plays an important role in governing ribosome biogenesis and protein synthesis downstream of mammalian/mechanistic target of rapamycin complex 1(mTORC1), thus regulating the development of digestive organs. Our study indicates the requirement of hyperactive protein synthesis for the digestive organ development.  相似文献   

4.
The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory animals used to assess potential adverse developmental effects. This article emphasizes vertebrae and rib anomalies both spontaneous and agent induced. Topics discussed include the morphology of the more common effects; incidences in both human and experimental animal populations; the types of anomalies induced in the axial skeleton by methanol, boric acid, valproic acid and others; the postnatal persistence of common skeletal anomalies; and the genetic control of the development of the axial skeleton. Tables of the spontaneous incidence of axial anomalies in both humans and animals are provided.  相似文献   

5.
6.
Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling‐related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. J. Cell. Physiol. 227: 3731–3743, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
The scleractinian finger coral Porites compressa has been documented to develop raised growth anomalies of unknown origin, commonly referred to as “tumors”. These skeletal tissue anomalies (STAs) are circumscribed nodule-like areas of enlarged skeleton and tissue with fewer polyps and zooxanthellae than adjacent tissue. A field survey of the STA prevalence in Oahu, Kaneohe Bay, Hawaii, was complemented by laboratory analysis to reveal biochemical, histological and skeletal differences between anomalous and reference tissue. MutY, Hsp90a1, GRP75 and metallothionein, proteins known to be up-regulated in hyperplastic tissues, were over expressed in the STAs compared to adjacent normal-appearing and reference tissues. Histological analysis was further accompanied by elemental and micro-structural analyses of skeleton. Anomalous skeleton was of similar aragonite composition to adjacent skeleton but more porous as evidenced by an increased rate of vertical extension without thickening. Polyp structure was retained throughout the lesion, but abnormal polyps were hypertrophied, with increased mass of aboral tissue lining the skeleton, and thickened areas of skeletogenic calicoblastic epithelium along the basal floor. The latter were highly metabolically active and infiltrated with chromophore cells. These observations qualify the STAs as hyperplasia and are the first report in poritid corals of chromophore infiltration processes in active calicoblastic epithelium areas.  相似文献   

10.
Regulation of ribosome biogenesis within the nucleolus.   总被引:1,自引:0,他引:1  
D J Leary  S Huang 《FEBS letters》2001,509(2):145-150
  相似文献   

11.
12.
13.
Development of the facial skeleton depends on interactions between intrinsic factors in the skeletal precursors and extrinsic signals in the facial environment. Hox genes have been proposed to act cell-intrinsically in skeletogenic cranial neural crest cells (CNC) for skeletal pattern. However, Hox genes are also expressed in other facial tissues, such as the ectoderm and endoderm, suggesting that Hox genes could also regulate extrinsic signalling from non-CNC tissues. Here we study moz mutant zebrafish in which hoxa2b and hoxb2a expression is lost and the support skeleton of the second pharyngeal segment is transformed into a duplicate of the first-segment-derived jaw skeleton. By performing tissue mosaic experiments between moz(-) and wild-type embryos, we show that Moz and Hox genes function in CNC, but not in the ectoderm or endoderm, to specify the support skeleton. How then does Hox expression within CNC specify a support skeleton at the cellular level? Our fate map analysis of skeletal precursors reveals that Moz specifies a second-segment fate map in part by regulating the interaction of CNC with the first endodermal pouch (p1). Removal of p1, either by laser ablation or in the itga5(b926) mutant, reveals that p1 epithelium is required for development of the wild-type support but not the moz(-) duplicate jaw-like skeleton. We present a model in which Moz-dependent Hox expression in CNC shapes the normal support skeleton by instructing second-segment CNC to undergo skeletogenesis in response to local extrinsic signals.  相似文献   

14.
15.
16.
17.
During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome.  相似文献   

18.
The re-initiation of bone development in adult starving Atlantic salmon (Salmo salar) during their energetically expensive upstream migration is remarkable and deserves closer examination. Dramatic alterations of the skull bones and teeth, most prominently, the development of a kype in males, are widely known but little studied or understood. We describe the microstructure and the cellular processes involved in the formation of the skeletal tissues of the kype. Fresh bone material, obtained from animals migrating upstream was subjected to radiological, histological or histochemical analysis. We show that the kype is, in part, composed of rapidly growing skeletal needles arising at the tip of the dentary. Proximally, the needles anastomose into a spongiosa-like meshwork which retains connective tissue inside bone marrow spaces. Ventrally, the needles blend into Sharpey fiber bone. Skeletal needles and Sharpey fiber bone can be distinguished from the compact bone of the dentary by radiography. Rapid formation of the skeleton of the kype is demonstrated by the presence of numerous osteoblasts, a broad distal osteoid zone, and the appearance of proteoglycans at the growth zone. The mode of bone formation in anadromous males can be described as 'making bone as fast as possible and with as little material as possible'. Unlike the normal compact bone of the dentary, the new skeletal tissue contains chondrocytes and cartilaginous extracellular matrix. Formation of the skeleton of the kype resembles antler development in deer (a form of regeneration), or hyperostotic bone formation in other teleost fishes, rather than periosteal bone growth. The type of boneformation may be understandable in the light of the animals' starvation and the energetic costs of upstream migration. However, the structured and regulated mode of bone formation suggests that the skeleton of the kype has functional relevance and is not a by-product of hormonal alterations or change of habitat.  相似文献   

19.
The segmental structure of the vertebrate body plan is most evident in the axial skeleton. The regulated generation of somites, a process called somitogenesis, underlies the vertebrate body plan and is crucial for proper skeletal development. A genetic clock regulates this process, controlling the timing of somite development. Molecular evidence for the existence of the segmentation clock was first described in the expression of Notch signaling pathway members, several of which are expressed in a cyclic fashion in the presomitic mesoderm (PSM). The Wnt and fibroblast growth factor (FGF) pathways have also recently been linked to the segmentation clock, suggesting that a complex, interconnected network of three signaling pathways regulates the timing of somitogenesis. Mutations in genes that have been linked to the clock frequently cause abnormal segmentation in model organisms. Additionally, at least two human disorders, spondylocostal dysostosis (SCDO) and Alagille syndrome (AGS), are caused by mutations in Notch pathway genes and exhibit vertebral column defects, suggesting that mutations that disrupt segmentation clock function in humans can cause congenital skeletal defects. Thus, it is clear that the correct, cyclic function of the Notch pathway within the vertebrate segmentation clock is essential for proper somitogenesis. In the future, with a large number of additional cyclic genes recently identified, the complex interactions between the various signaling pathways making up the segmentation clock will be elucidated and refined.  相似文献   

20.
Many Acropora palmata colonies consist of an encrusting basal portion and erect branches. Linear growth of the skeleton results in extension along the substrate (encrusting growth), lengthening of branches (axial growth) and thickening of branches and crust (radial growth). Scanning Electron Microscopy is used to compare the mechanisms of skeletal extension between encrusting growth and axial growth. In encrusting growth, the distal margin of the skeleton lacks corallites (which develop about 1 mm from the edge); in contrast, in axial growth, axial corallites along the branch tip form the distal portion of the skeleton. In both locations, the distal margin of the skeleton consists of a lattice-like structure composed of rods that extend from the body of the skeleton and bars that connect these rods. An actively extending skeleton is characterized by sharply pointed rods and partially developed bars. Distal growth of rods (and formation of bars) is effected by the formation of new sclerodermites. Each sclerodermite begins with the deposition of fusiform crystals (that range in length from 1 to 5 μm). These provide a surface for nucleation and growth of spherulitic tufts, clusters of short (<1 μm long) aragonite needles. The needles that are oriented perpendicular to the axis of the skeletal element (rod or bar), and perpendicular to the overlying calicoblastic epithelium, continue extension to appear on the surface of the skeleton as 10–15 μm wide bundles (of needle tips) called fasciculi. However, some crusts that abut competitors for space have a different morphology of skeletal elements (rods and bars). The distal edge of these crusts terminates in blunt coalescing rods, and bars that are fully formed. Absence of fusiform crystals, lack of sharply pointed rods and bars, and full development of sclerodermites characterize a skeletal region that has ceased, perhaps only temporarily, skeletal extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号