首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以华北平原高产农田3年定位试验为基础,研究了生物炭与矿质肥配施对土壤容重、阳离子交换量和颗粒有机质组分中碳、氮含量的影响.试验共设4个处理:单施氮磷钾肥(CK);氮磷钾肥+2250 kg·hm-2生物炭(C1);氮磷钾肥+4500 kg·hm-2生物炭(C2);炭基缓释肥(750 kg·hm-2,CN).结果表明: 与CK相比,C1和C2处理显著降低了0~7.5 cm土层容重,降低幅度分别为4.5%和6.0%;施用生物炭增加了0~15 cm土层的阳离子交换量,其中C2处理增加了24.5%;在0~7.5 cm土层,C1处理土壤颗粒有机质组分中的碳、氮浓度较CK处理分别增加了250%和85%,C2处理分别增加了260%和120%.施用生物炭3年后土壤理化特性得到明显改善,并在碳增汇和温室减排方面具有潜在积极效应.  相似文献   

2.
Compost and biochar, used for the remediation of soil, are seen as attractive waste management options for the increasing volume of organic wastes being produced. This paper reviews the interaction of biochar and composting and its implication for soil amendment and pollution remediation. The interaction of biochar and composting affect each other’s properties. Biochar could change the physico-chemical properties, microorganisms, degradation, humification and gas emission of composting, such as the increase of nutrients, cation exchange capacity (CEC), organic matter and microbial activities. The composting could also change the physico-chemical properties and facial functional groups of biochar, such as the improvement of nutrients, CEC, functional groups and organic matter. These changes would potentially improve the efficiency of the biochar and composting for soil amendment and pollution remediation. Based on the above review, this paper also discusses the future research required in this field.  相似文献   

3.
The application of biochar as a soil amendment to improve soil fertility has been suggested as a tool to reduce soil‐borne CO2 and non‐CO2 greenhouse gas emissions, especially nitrous oxide (N2O). Both laboratory and field trials have demonstrated N2O emission reduction by biochar amendment, but the long‐term effect (>1 year) has been questioned. Here, we present results of a combined microcosm and field study using a powdered beech wood biochar from slow pyrolysis. The field experiment showed that both CO2 and N2O emissions were still effectively reduced by biochar in the third year after application. However, biochar did not influence the biomass yield of sunflower for biogas production (Helianthus annuus L.). Biochar reduced bulk density and increased soil aeration and thus reduced the water‐filled pore space (WFPS) in the field, but was also able to suppress N2O emission in the microcosms experiment conducted at constant WFPS. For both experiments, biochar had limited impact on soil mineral nitrogen speciation, but it reduced the accumulation of nitrite in the microcosms. Extraction of soil DNA and quantification of functional marker genes by quantitative polymerase chain reaction showed that biochar did not alter the abundance of nitrogen‐transforming bacteria and archaea in both field and microcosm experiments. In contradiction to previous experiments, this study demonstrates the long‐term N2O emission suppression potential of a wood biochar and thus highlights its overall climate change mitigation potential. While a detailed understanding of the underlying mechanisms requires further research, we provide evidence for a range of biochar‐induced changes to the soil environment and their change with time that might explain the often observed N2O emission suppression.  相似文献   

4.
Chloropicrin (CP) and metam sodium are commonly used as fumigants in agricultural soils in order to provide effective control of nematodes, soil-borne pathogens, and weeds in preparation for planting of high-value cash crops. Repeated application of these compounds to agricultural soils for many years may result in the enrichment of microorganisms capable of degrading them. In this study, a microcosm-enrichment approach was used to investigate bacterial populations that may be components of metam-sodium- and CP-degrading microorganisms in compost-amended soils. After 6 months incubation, with repeated application of metam sodium and CP, degradation was 70% faster in compost-manure-amended (CM) soil compared to 50% in the unamended soils. The accelerated fumigant degradation may have been due to the addition of compost or to the development of new microbial populations with enhanced degradation capacity. Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified regions of 16S rRNA genes were used to identify dominant bacterial populations responsible for the accelerated fumigant degradation. The DGGE results indicated that specific bacterial types had been enriched and these were similar to strains isolated from basal minimal media. Fragments from DGGE bands and colonies were cloned, sequenced, and compared with published 16S rRNA sequences. Cloned sequences were dominated by Pseudomonas, Bacillus, Arthrobacter, Mycobacterium and uncultured bacterial species. The addition of organic amendment to soil during fumigation practices has the potential to increase the diversity of different microbial species, thereby accelerating fumigant degradation and reducing atmospheric emissions.  相似文献   

5.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

6.
生物炭对不同土壤化学性质、小麦和糜子产量的影响   总被引:37,自引:0,他引:37  
陈心想  何绪生  耿增超  张雯  高海英 《生态学报》2013,33(20):6534-6542
以小麦和糜子为供试作物,利用室外盆栽试验,研究了不同添加量生物炭与矿质肥配施对两种不同土壤化学性质及小麦和糜子产量的影响。生物炭当季用量设5个水平:B0 (0 t/hm2)、B5 (5 t/hm2)、B10 (10 t/hm2)、B15 (15 t/hm2)和B20 (20 t/hm2),氮磷钾肥均作基肥施用。结果表明:1.与对照相比,施用生物炭可以显著增加新积土糜子季土壤pH值,其他处理随生物炭用量的增加虽有增加趋势但差异不显著;显著增加新积土土壤阳离子交换量,增幅为1.5 %—58.2 %;显著增加两种土壤有机碳含量,增幅为31.1 %—272.2 %;2.两种土壤的矿质态氮含量、新积土土壤有效磷和速效钾含量随生物炭用量的增加而显著提高,氮磷钾增幅分别为6.0 %—112.8 %、3.8 %—38.5 %和6.1 %—47.2 %;3.生物炭可显著提高塿土上作物氮吸收量,而作物磷、钾吸收量虽有增加,但差异不显著。生物炭对小麦和糜子的增产效应尚不稳定,在试验最高用量时甚至产生轻微抑制作用。总之,施用生物炭在一定程度上可以改善土壤化学性质,提高土壤有效养分含量,但生物炭对土壤和作物的影响与土壤、作物类型及土壤肥力密切相关。  相似文献   

7.
李忠意  杨希  赵新儒  程永毅 《生态学报》2021,41(19):7743-7750
为研究不同有机物料对喀斯特石灰土元素有效性的影响,采用40 d的室内培养实验,比较了单独添加不同比例(1%、3%、5%)的生物质炭、鸡粪肥、羊粪肥对喀斯特石灰土有效N、Fe、Zn含量的影响。结果表明:添加生物质炭提高了喀斯特石灰土的pH值,而添加鸡粪肥和羊粪肥降低了喀斯特石灰土的pH值;添加3种有机物料均增加了喀斯特石灰土的有机质含量,大小关系为:生物质炭 > 鸡粪肥 > 羊粪肥,但添加鸡粪肥和羊粪肥土壤有机质的化学活性和微生物活性更高。受pH、有机质活性、碳氮比等因素的影响,添加鸡粪肥和羊粪肥能增加土壤有效N含量,但两种有机肥对土壤有效N的提高效果相差不大,而添加生物质炭反而降低了土壤有效N的含量;3种有机物料均能提高土壤的有效Fe和有效Zn含量,其中鸡粪肥效果最佳,其次为羊粪肥和生物质炭。当3种有机物料的添加比例为5%时,生物质炭处理土壤的有效N、Fe、Zn含量分别是对照处理的0.92、1.13、1.21倍;鸡粪肥处理土壤的有效N、Fe、Zn含量分别是对照处理的1.22、1.63和3.39倍;羊粪肥处理土壤的有效N、Fe、Zn含量分别是对照处理的1.27、1.34和2.59倍。所以,相对于生物质炭,有机粪肥对喀斯特地区的石灰土有更好的改良效果。  相似文献   

8.
Biochar amendment of soil improves resilience to climate change   总被引:1,自引:0,他引:1  
Because of climate change, insufficient soil moisture may increasingly limit crop productivity in certain regions of the world. This may be particularly consequential for biofuel crops, many of which will likely be grown in drought‐prone soils to avoid competition with food crops. Biochar is the byproduct of a biofuel production method called pyrolysis. If pyrolysis becomes more common as some scientists predict, biochar will become more widely available. We asked, therefore, whether the addition of biochar to soils could significantly increase the availability of water to a crop. Biochar made from switchgrass (Panicum virgatum L.) shoots was added at the rate of 1% of dry weight to four soils of varying texture, and available water contents were calculated as the difference between field capacity and permanent wilting point water contents. Biochar addition significantly increased the available water contents of the soils by both increasing the amount of water held at field capacity and allowing plants to draw the soil to a lower water content before wilting. Among the four soils tested, biochar amendment resulted in an additional 0.8–2.7 d of transpiration, which could increase productivity in drought‐prone regions or reduce the frequency of irrigation. Biochar amendment of soils may thus be a viable means of mitigating some of the predicted decrease in water availability accompanying climate change that could limit the future productivity of biofuel crops.  相似文献   

9.
Intensive vegetable production exhibits contrasting characteristics of high nitrous oxide (N2O) emissions and low nitrogen use efficiency (NUE). In an effort to mitigate N2O emissions and improve NUE, a field experiment with nine consecutive vegetable crops was designed to study the combined effects of nitrogen (N) and biochar amendment and their interaction on soil properties, N2O emission and NUE in an intensified vegetable field in southeastern China. We found that N application significantly increased N2O emissions, N2O–N emission factors and yield‐scaled N2O emissions by 51–159%, 9–125% and 14–131%, respectively. Moreover, high N input significantly decreased N partial factor productivity (PFPN) and even yield during the seventh to ninth vegetable crops along with obvious soil degradation and mineral N accumulation. To the contrary, biochar amendment resulted in significant decreases in cumulative N2O emissions, N2O–N emission factor and yield‐scaled N2O emissions by 5–39%, 16–67% and 14–53%, respectively. In addition, biochar significantly increased yield, PFPN and apparent recovery of N (ARN). Although without obvious influence during the first to fourth vegetable crops, biochar amendment mitigated N2O emissions during the fifth to ninth vegetable crops. The relative effects of biochar amendments were reduced with increasing N application rate. Hence, while high N input produced adverse consequences such as mineral N accumulation and soil degradation in the vegetable field, biochar amendment can be a beneficial agricultural strategy to mitigate N2O emissions and improve NUE and soil quality in vegetable field.  相似文献   

10.
生物炭在提高土壤磷素有效性及促进作物生长方面具有显著作用,但其效果因土壤类型不同存在较大差异。试验以赤红壤(pH 4.91)和褐土(pH 7.24)为供试土壤,设置3种磷肥水平(0、30、90 kg P·hm-2,分别以不施磷、低磷、高磷表示)配施稻秆生物炭(0、4%)的大豆盆栽试验,研究了不同磷水平下配施生物炭对土壤磷有效性、磷酸单酯酶活性和植株磷吸收的影响。结果表明: 不同磷水平配施生物炭显著提高了两种土壤的速效磷和全磷含量,且低磷水平添加生物炭处理速效磷增幅最大,在赤红壤和褐土的增幅分别为192.6%和237.1%。与低磷相比,赤红壤中低磷配施生物炭处理的碱性磷酸单酯酶活性显著增加78.9%,活性有机磷含量降低39.3%,同时显著促进了植株生长与磷吸收;生物炭添加显著降低了褐土活性有机磷含量,但不同处理对土壤磷酸单酯酶活性和植株生长无显著影响。土壤活性有机磷含量与速效磷含量均呈显著负相关。综上,生物炭对土壤磷有效性的作用因土壤类型和磷肥水平差异而不同,其在赤红壤上对植株生长和磷吸收的促进效应强于褐土,且在低磷条件下效果更佳。本研究为生物炭在减施磷肥和促进大豆磷吸收,特别是在赤红壤上的应用提供了科学依据。  相似文献   

11.

Aims

A field experiment was conducted to investigate the effect of biochar on maize yield and greenhouse gases (GHGs) in a calcareous loamy soil poor in organic carbon from Henan, central great plain, China.

Methods

Biochar was applied at rates of 0, 20 and 40?t?ha?1 with or without N fertilization. With N fertilization, urea was applied at 300?kg?N ha?1, of which 60% was applied as basal fertilizer and 40% as supplementary fertilizer during crop growth. Soil emissions of CO2, CH4 and N2O were monitored using closed chambers at 7?days intervals throughout the whole maize growing season (WMGS).

Results

Biochar amendments significantly increased maize production but decreased GHGs. Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% with N fertilization under biochar amendment at 20?t?ha?1 and 40?t?ha?1, respectively. Total N2O emission was decreased by 10.7% and by 41.8% under biochar amendment at 20?t?ha?1 and 40?t?ha?1 compared to no biochar amendment with N fertilization. The high rate of biochar (40?t?ha?1) increased the total CO2 emission by 12% without N fertilization. Overall, biochar amendments of 20?t?ha?1 and 40?t?ha?1 decreased the total global warming potential (GWP) of CH4 and N2O by 9.8% and by 41.5% without N fertilization, and by 23.8% and 47.6% with N fertilization, respectively. Biochar amendments also decreased soil bulk density and increased soil total N contents but had no effect on soil mineral N.

Conclusions

These results suggest that application of biochar to calcareous and infertile dry croplands poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions.  相似文献   

12.
We examined the effect of biochar on the water-soluble arsenic (As) concentration and the extent of organochlorine degradation in a co-contaminated historic sheep-dip soil during a 180-d glasshouse incubation experiment. Soil microbial activity, bacterial community and structure diversity were also investigated. Biochar made from willow feedstock (Salix sp) was pyrolysed at 350 or 550°C and added to soil at rates of 10 g kg-1 and 20 g kg-1 (representing 30 t ha-1 and 60 t ha-1). The isomers of hexachlorocyclohexane (HCH) alpha-HCH and gamma-HCH (lindane), underwent 10-fold and 4-fold reductions in concentration as a function of biochar treatment. Biochar also resulted in a significant reduction in soil DDT levels (P < 0.01), and increased the DDE:DDT ratio. Soil microbial activity was significantly increased (P < 0.01) under all biochar treatments after 60 days of treatment compared to the control. 16S amplicon sequencing revealed that biochar-amended soil contained more members of the Chryseobacterium, Flavobacterium, Dyadobacter and Pseudomonadaceae which are known bioremediators of hydrocarbons. We hypothesise that a recorded short-term reduction in the soluble As concentration due to biochar amendment allowed native soil microbial communities to overcome As-related stress. We propose that increased microbiological activity (dehydrogenase activity) due to biochar amendment was responsible for enhanced degradation of organochlorines in the soil. Biochar therefore partially overcame the co-contaminant effect of As, allowing for enhanced natural attenuation of organochlorines in soil.  相似文献   

13.
生物炭对农田土壤微生物生态的影响研究进展   总被引:5,自引:1,他引:5  
丁艳丽  刘杰  王莹莹 《生态学杂志》2013,24(11):3311-3317
生物炭作为新型土壤改良剂在国内外环境科学等领域受到广泛的关注.关于生物炭对土壤理化性质的改良研究较早,目前虽然已深入到土壤微生物生态的领域,但是大多数将土壤理化性质与土壤微生物生态分开考虑,缺乏对二者相互作用的系统评述.本文总结了施用生物炭后土壤理化性质的改变与土壤微生物群落变化之间的相互关系:生物炭不仅能够提高土壤pH值、增强土壤的持水能力、增加土壤有机质等,而且会影响土壤微生物的群落结构、改变细菌和真菌的丰度;施用生物炭后,土壤环境和土壤微生物之间互相影响互相制约,共同促进了土壤微生物生态系统的改良.本文旨在为生物炭改良农田土壤微生态的深入研究提供新的思路,从生态系统的角度促进生物炭环境效应影响的研究,使生物炭的应用更具有科学性和有效性,并对生物炭在相关领域的应用进行了展望.  相似文献   

14.
Biochar is a carbon (C)‐rich solid produced from the thermochemical pyrolysis of biomass. Its amendment to soils has been proposed as a promising mean to mitigate greenhouse gas emissions and simultaneously benefit agricultural crops. However, how biochar amendment affects plant photosynthesis and growth remains unclear, especially on a global scale. In this study, we conducted a global synthesis of 74 publications with 347 paired comparisons to acquire an overall tendency of plant photosynthesis and growth following biochar amendment. Overall, we found that biochar amendment significantly increased photosynthetic rate by 27.1%, and improved stomatal conductance, transpiration rate, water use efficiency, and chlorophyll concentration by 19.6%, 26.9%, 26.8%, and 16.1%, respectively. Meanwhile, plant total biomass, shoot biomass, and root biomass increased by 25.4%, 22.1%, and 34.4%, respectively. Interestingly, plant types (C3 and C4 plants) showed greater control over plant photosynthesis and biomass than a broad suite of soil and biochar factors. Biochar amendment largely boosted photosynthesis and biomass on C3 plants, but had a limited effect on C4 plants. Our results highlight the importance of the differential response of plant types to biochar amendment with respect to plant growth and photosynthesis, providing a scientific foundation for making reasonable strategies towards an extensive application of biochar for agricultural production management.  相似文献   

15.
Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.  相似文献   

16.
《植物生态学报》2017,41(11):1177
Aims Recent studies have shown that artificial addition of biochar is an effective way to mitigate atmospheric carbon dioxide concentrations. However, it is still unclear how biochar addition influences soil respiration in Phyllostachys edulis forests of subtropical China. Our objectives were to examine the effects of biochar addition on the dynamics of soil respiration, soil temperature, soil moisture, and the cumulative soil carbon emission, and to determine the relationships of soil respiration with soil temperature and moisture.Methods We conducted a two-year biochar addition experiment in a subtropical P. edulis forest from 2014.05 to 2016.04. The study site is located in the Miaoshanwu Nature Reserve in Fuyang district of Hangzhou, Zhejiang Province, in southern China. The biochar addition treatments included: control (CK, no biochar addition), low rate of biochar addition (LB, 5 t·hm-2), medium rate of biochar addition (MB, 10 t·hm-2), and high rate of biochar addition (HB, 20 t·hm-2). Soil respiration was measured by using a LI-8100 soil CO2 efflux system.Important findings Soil respiration was significantly reduced by biochar addition, and exhibited an apparent seasonal pattern, with the maximum occurring in June or July (except LB in one of the replicated stand) and the minimum in January or February. There were significant differences in soil respiration between the CK and the treatments. Annual mean soil respiration rate in the CK, LB, MB and HB were 3.32, 2.66, 3.04 and 3.24 μmol·m-2·s-1, respectively. Compared with CK, soil respiration rate was 2.33%-54.72% lower in the LB, 1.28%-44.21% lower in the MB, and 0.09%-39.22% lower in the HB. The soil moisture content was increased by 0.97%-75.58% in LB, 0.87%-48.18% in MB, and 0.68%-74.73% in HB, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature and a significant linear relationship with combination of soil temperature and moisture at the depth of 5 cm; no significant relationship was found between soil respiration and soil moisture alone. The temperature sensitivity (Q10) value was reduced in LB and HB. Annual accumulative soil carbon emission in the LB, MB and HB was reduced by 7.98%-35.09%, 1.48%-20.63%, and -4.71%-7.68%, respectively. Biochar addition significantly reduced soil carbon emission and soil temperature sensitivity, highlighting its role in mitigating climate change.  相似文献   

17.
以温室黄瓜连作6年和10年土壤添加质量比为5%生物炭为处理,以不添加生物炭为对照,采用桶栽的方法,研究了生物炭对不同年限连作土壤养分和微生物群落多样性的影响.结果表明: 与连作土壤相比,生物炭处理的连作6年土壤的黄瓜单株产量提高11.4%,连作10年土壤产量提高62.8%.施入生物炭显著降低了2种连作土壤容重,显著提高了有机质、速效磷含量、阳离子交换量(CEC)和pH;显著提高了土壤细菌数量和细菌/真菌,降低了真菌和尖孢镰刀菌数量,使土壤类型由真菌型向细菌型转变,尤其对连作10年土壤作用最为明显,土壤细菌和细菌/真菌分别是未处理的2.00和3.64倍,真菌和尖孢镰刀菌数量分别是未处理的54.8%和55.9%.土壤微生物群落碳源利用分析表明,10年连作土壤施入生物炭可显著提高土壤微生物活性、Shannon指数和均匀度指数,分别是未处理的1.50、2.14和1.31倍,同时显著提高了土壤微生物对糖类、氨基酸类、酚酸类和胺类碳源的利用强度,分别是未处理的1.62、1.81、1.74和1.93倍.相关性分析表明,土壤容重、速效磷含量、CEC和pH 4个指标对微生物群落变化的影响较显著.综上,生物炭通过对连作土壤理化性质及土壤微生物生态系统的改善,优化了黄瓜根区环境,促进了黄瓜产量的提高,缓解了温室黄瓜连作障碍.  相似文献   

18.
Restoring overstocked forests by thinning and pyrolyzing residual biomass produces biochar and other value‐added products. Forest soils amended with biochar have potential to sequester carbon (C), improve soil quality, and alter greenhouse gas (GHG) emissions without depleting nutrient stocks. Yet, few studies have examined the effects of biochar on GHG emissions and tree growth in temperate forest soils. We measured GHG emissions, soil C content, and tree growth at managed forest sites in Idaho, Montana, and Oregon. We applied biochar amendments of 0, 2.5, or 25 Mg/ha to the forest soil surface. Flux of carbon dioxide and methane varied by season; however, neither were affected by biochar amendment. Flux of nitrous oxide was not detected at these nitrogen‐limited and unfertilized forest sites. Biochar amendment increased soil C content by 41% but did not affect tree growth. Overall, biochar had no detrimental effects on forest trees or soils. We conclude that biochar can be used harmlessly for climate change mitigation in forests by sequestering C in the soil.  相似文献   

19.
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.  相似文献   

20.
Crude oil contamination is a serious environmental threat to soil and plants growing in it. Biochar has the potential of biostimulation for remediation of crude oil-contaminated soil. Therefore, the current research was designed to analyze the bio-stimulatory impact of biochar for remediating the crude oil contaminated soil (10%, and 15%), and growth of maize under glasshouse conditions. Biochar was produced by pyrolysis of Australian pines at 350 °C. Soil incubations were done for 20 days. The results of soil analysis showed that the crude oil degradation efficiency of biochar was 34%. The soil enzymatic activities had shown 38.5% increase in fluorescein diacetate (FDA) hydrolysis and 55.6% increase in dehydrogenase activity in soil incubated with biochar in comparison to control. The soil microbial diversity was improved to 41% in biochar treated soil with respect to untreated one, while microbial respiration rate had shown a 33.67% increase in soil incubated with biochar with respect to control under oil stress. Gas Chromatography Mass spectrometry (GC-MS) analysis had shown the high content of low molecular weight hydrocarbons (C9-C13) in the soil incubated with biochar in comparison to untreated soil. Biochar showed a significant increase in fresh and dry biomass (25%, 14.61%), leaf area (10%), total chlorophyll (11%), water potential (21.6%), osmotic potential (21%), and membrane stability index (12.7%). Moreover, biochar treatment showed a higher increase in the contents of proline (29%), total amino acids (18%), soluble sugars (30.4%), and antioxidant enzymes like superoxide dismutase (16.5%), catalase (11%), and peroxidase (12%). Overall, the results of the present study suggest the bio-stimulating potential of biochar for degradation of hydrocarbons in crude oil contaminated soil and their growth-stimulating effects on maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号