首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows “power athletes” to perform a simple foot movement significantly faster than “endurance athletes”. We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 “power athletes” requiring high speed foot movements (sprinters, jumpers, throwers) and 16 endurance athletes (distance runners) which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI) was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry). We tested maximum movement velocity of plantarflexion (PF-Vmax) and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system.  相似文献   

2.
Previous research has indicated the importance of the frontal lobe and its ‘executive’ connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter) has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the ‘universal scaling law’ of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal) white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to ‘executive control’. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids.  相似文献   

3.
4.
The year 2000 Olympic and Paralympic Games heldin Sydney, Australia were unique in the historyof the Games because they were staged in theearly to mid spring. This led to the concernthat pollen-sensitive athletes may havesignificant problems with allergic symptomstriggered by pollen exposure and that this mayhave compromised their ability to attain theirbest performance. Unfortunately, there was nosystematic pollen count data available for thecity of Sydney up until this time so thepurpose of this study was to obtain a profileof the pattern and type of pollens in theregion so that Olympic team managers andmedical staff could be adequately advised andable to prepare allergic athletes for anyexposures encountered while training andcompeting.We performed pollen monitoring of three majorOlympic venues over the six years before theGames to provide a profile of the mostprevalent species appearing over the spring.The pollen counts obtained at the major siteswere extremely high over the periods oftraining and competition. Tree pollens appearedfrom late July, peaking in August andSeptember, whilst grass pollens appeared fromSeptember and peaked in mid October. Arelatively small number of pollen varietiescomprise the majority of the pollen count.  相似文献   

5.

Background

The research on brain plasticity has fascinated researchers for decades. Use/training serves as an instrumental factor to influence brain neuroplasticity. Parallel to acquisition of behavioral expertise, extensive use/training is concomitant with substantial changes of cortical structure. Acupuncturists, serving as a model par excellence to study tactile-motor and emotional regulation plasticity, receive intensive training in national medical schools following standardized training protocol. Moreover, their behavioral expertise is corroborated during long-term clinical practice. Although our previous study reported functional plastic brain changes in the acupuncturists, whether or not structural plastic changes occurred in acupuncturists is yet elusive.

Methodology/Principal Findings

Cohorts of acupuncturists (N = 22) and non-acupuncturists (N = 22) were recruited. Behavioral tests were delivered to assess the acupuncturists’ behavioral expertise. The results confirmed acupuncturists’ tactile-motor skills and emotion regulation proficiency compared to non-acupuncturists. Using the voxel-based morphometry technique, we revealed larger grey matter volumes in acupuncturists in the hand representation of the contralateral primary somatosensory cortex (SI), the right lobule V/VI and the bilateral ventral anterior cingulate cortex/ventral medial prefrontal cortex. Grey matter volumes of the SI and Lobule V/VI positively correlated with the duration of acupuncture practice.

Conclusions

To our best knowledge, this study provides first evidence for the anatomical alterations in acupuncturists, which would possibly be the neural correlates underlying acupuncturists’ exceptional skills. On one hand, we suggest our findings may have ramifications for tactile-motor rehabilitation. On the other hand, our results in emotion regulation domain may serve as a target for our future studies, from which we can understand how modulations of aversive emotions elicited by empathic pain develop in the context of expertise. Future longitudinal study is necessary to establish the presence and direction of a causal link between practice/use and brain anatomy.  相似文献   

6.

Background

Higher levels of fitness or physical function are positively associated with cognitive outcomes but the potential underlying mechanisms via brain structure are still to be elucidated in detail. We examined associations between brain structure and physical function (contemporaneous and change over the previous three years) in community-dwelling older adults.

Methodology/Principal Findings

Participants from the Lothian Birth Cohort 1936 (N=694) underwent brain MRI at age 73 years to assess intracranial volume, and the volumes of total brain tissue, ventricles, grey matter, normal-appearing white matter, and white matter lesions. At ages 70 and 73, physical function was assessed by 6-meter walk, grip strength, and forced expiratory volume. A summary ‘physical function factor’ was derived from the individual measures using principal components analysis. Performance on each individual physical function measure declined across the three year interval (p<0.001). Higher level of physical function at ages 70 and 73 was associated with larger total brain tissue and white matter volumes, and smaller ventricular and white matter lesion volumes (standardized β ranged in magnitude from 0.07 to 0.17, p<0.001 to 0.034). Decline in physical function from age 70 to 73 was associated with smaller white matter volume (0.08, p<0.01, though not after correction for multiple testing), but not with any other brain volumetric measurements.

Conclusions/Significance

Physical function was related to brain volumes in community-dwelling older adults: declining physical function was associated with less white matter tissue. Further study is required to explore the detailed mechanisms through which physical function might influence brain structure, and vice versa.  相似文献   

7.
It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18–65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18–65 year age range.  相似文献   

8.
We studied a sample of 75 Chinese, 73 Malay, and 29 Indian healthy neonates taking part in a cohort study to examine potential differences in neonatal brain morphology and white matter microstructure as a function of ethnicity using both structural T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). We first examined the differences in global size and morphology of the brain among the three groups. We then constructed the T2-weighted MRI and DTI atlases and employed voxel-based analysis to investigate ethnic differences in morphological shape of the brain from the T2-weighted MRI, and white matter microstructure measured by fractional anisotropy derived from DTI. Compared with Malay neonates, the brains of Indian neonates’ tended to be more elongated in anterior and posterior axis relative to the superior-inferior axis of the brain even though the total brain volume was similar among the three groups. Although most anatomical regions of the brain were similar among Chinese, Malay, and Indian neonates, there were anatomical variations in the spinal-cerebellar and cortical-striatal-thalamic neural circuits among the three populations. The population-related brain regions highlighted in our study are key anatomical substrates associated with sensorimotor functions.  相似文献   

9.
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.  相似文献   

10.

Objective

Using multidisciplinary treatment modalities the majority of children with cancer can be cured but we are increasingly faced with therapy-related toxicities. We studied brain morphology and neurocognitive functions in adolescent and young adult survivors of childhood acute, low and standard risk lymphoblastic leukemia (ALL), which was successfully treated with chemotherapy. We expected that intravenous and intrathecal chemotherapy administered in childhood will affect grey matter structures, including hippocampus and olfactory bulbs, areas where postnatal neurogenesis is ongoing.

Methods

We examined 27 ALL-survivors and 27 age-matched healthy controls, ages 15–22 years. ALL-survivors developed disease prior to their 11th birthday without central nervous system involvement, were treated with intrathecal and systemic chemotherapy and received no radiation. Volumes of grey, white matter and olfactory bulbs were measured on T1 and T2 magnetic resonance images manually, using FIRST (FMRIB’s integrated Registration and Segmentation Tool) and voxel-based morphometry (VBM). Memory, executive functions, attention, intelligence and olfaction were assessed.

Results

Mean volumes of left hippocampus, amygdala, thalamus and nucleus accumbens were smaller in the ALL group. VBM analysis revealed significantly smaller volumes of the left calcarine gyrus, both lingual gyri and the left precuneus. DTI data analysis provided no evidence for white matter pathology. Lower scores in hippocampus-dependent memory were measured in ALL-subjects, while lower figural memory correlated with smaller hippocampal volumes.

Interpretation

Findings demonstrate that childhood ALL, treated with chemotherapy, is associated with smaller grey matter volumes of neocortical and subcortical grey matter and lower hippocampal memory performance in adolescence and adulthood.  相似文献   

11.
Cognitive ability is a strong predictor of occupational achievement, quality of life and physical health. While variation in cognition is strongly heritable and has been robustly associated with early environment and brain morphology, little is known about how these factors combine and interact to explain this variation in cognition. To address this, we modelled the relationship between common genetic variation, grey matter volume, early life adversity and education and cognitive ability in a UK Biobank sample of N = 5237 individuals using structural equation modelling. We tested the hypotheses that total grey matter volume would mediate the association between genetic variation and cognitive ability, and that early life adversity and educational attainment would moderate this relationship. Common genetic variation, grey matter volume and early life adversity were each significant predictors in the model, explaining ~15% of variation in cognitive ability. Contrary to our hypothesis, grey matter volume did not mediate the relation between genetic variation and cognition performance. Neither did early life adversity or educational attainment moderate this relation, although educational attainment was observed to moderate the relationship between grey matter volume and cognitive performance. We interpret these findings in terms of the modest explanatory value of currently estimated polygenic scores accounting for variation in cognitive performance (~5%), making potential mediating and moderating variables difficult to confirm.  相似文献   

12.

Background

The tobacco industry has long sought affiliation with major sporting events, including the Olympic Games, for marketing, advertising and promotion purposes. Since 1988, each Olympic Games has adopted a tobacco-free policy. Limited study of the effectiveness of the smoke-free policy has been undertaken to date, with none examining the tobacco industry’s involvement with the Olympics or use of the Olympic brand.

Methods and Findings

A comparison of the contents of Olympic tobacco-free policies from 1988 to 2014 was carried out by searching the websites of the IOC and host NOCs. The specific tobacco control measures adopted for each Games were compiled and compared with measures recommended by the WHO Tobacco Free Sports Initiative and Article 13 of the Framework Convention on Tobacco Control (FCTC). This was supported by semi-structured interviews of key informants involved with the adoption of tobacco-free policies for selected games. To understand the industry’s interests in the Olympics, the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu) was systematically searched between June 2013 and August 2014. Company websites, secondary sources and media reports were also searched to triangulate the above data sources.This paper finds that, while most direct associations between tobacco and the Olympics have been prohibited since 1988, a variety of indirect associations undermine the Olympic tobacco-free policy. This is due to variation in the scope of tobacco-free policies, limited jurisdiction and continued efforts by the industry to be associated with Olympic ideals.

Conclusions

The paper concludes that, compatible with the IOC’s commitment to promoting healthy lifestyles, a comprehensive tobacco-free policy with standardized and binding measures should be adopted by the International Olympic Committee and all national Olympic committees.  相似文献   

13.
The purpose of this study was to investigate differences in fat-free mass and thicknesses of various muscles among judo athletes of different performance levels. The subjects were 69 male judo athletes of 3 different performance levels. Group A was composed of athletes who participated in the Olympic Games or Asian Games (n = 13). Groups B (n = 21) and C (n = 35) were composed of judo athletes at a university who did or did not participate in intercollegiate competitions (including qualifying matches), respectively. Muscle and fat thicknesses were measured by B-mode ultrasound at 9 sites. Fat percentage was calculated from fat thicknesses using a previously reported equation. Fat-free mass was calculated from fat percentage and body weight. Muscles thicknesses were normalized to the height of the individual. Group A had significantly larger fat-free mass than Group C (p < 0.05). The normalized thicknesses of the elbow extensor and flexor muscles were significantly larger in Group A than in Group C. The normalized thickness of the elbow flexor muscle was significantly larger in Group A than in Group B. The results of this study showed that judo athletes with low performance levels such as those in Group C had lower fat-free mass, and the degree of development of the brachialis muscles differed according to performance level.  相似文献   

14.
On the basis of data gathered during a series of Pre-Olympic Trials and the World Championships, both held at Cagliari (Italy) in 1983 and 1986, respectively, the somatotypes of athletes practicing windsurfing were studied. The sample is composed of 79 male athletes: 22 Sardinians, 31 mainland Italians, and 26 Europeans. The Heath-Carter anthropometric method (1967) was used to somatotype the individuals under study. Both the total sample as well as the three subsamples are characterized by almost identical average values of the three components. A subsample of athletes was formed, who had obtained important performances in their carriers (victories in World, European and Italian championships, participation in the Olympic Games etc.). In this group of top athletes it was seen that the best results in windsurfing are obtained when there is an even development of the three components (2.57-2.68-2.97) or a slight ectomorphic predominance.  相似文献   

15.
The organizing committee of the 2016 Rio Olympic Games recently announced that some of the preliminary and final competitions will be held at night. The present article discusses the potential harmful effects of these late-night competitions on sleep, circadian rhythms and athletic performance during the Olympic Games. Specifically, night-time competition could lead to injury and may compromise an athlete’s decision-making, attentional, physiological and other processes. Consequently, these impacts could negatively affect the performance of athletes and their teams. Thus, it is suggested that technical commissions take special care when creating strategies to minimize harm to the athletes by considering factors such as light exposure, melatonin intake, sleep hygiene and scheduled naps, and training at local competition time. Furthermore, it is necessary for specialists in chronobiology and sleep to engage with members of the national teams to develop an activity schedule for physical, technical, tactical and psychological preparation that accounts for circadian rhythms, thereby creating the best possible environment for the athletes to achieve their ideal performance.  相似文献   

16.
Is sexual orientation associated with structural differences in the brain? To address this question, 80 homosexual and heterosexual men and women (16 homosexual men and 15 homosexual women) underwent structural MRI. We used voxel-based morphometry to test for differences in grey matter concentration associated with gender and sexual orientation. Compared with heterosexual women, homosexual women displayed less grey matter bilaterally in the temporo-basal cortex, ventral cerebellum, and left ventral premotor cortex. The relative decrease in grey matter was most prominent in the left perirhinal cortex. The left perirhinal area also showed less grey matter in heterosexual men than in heterosexual women. Thus, in homosexual women, the perirhinal cortex grey matter displayed a more male-like structural pattern. This is in accordance with previous research that revealed signs of sex-atypical prenatal androgenization in homosexual women, but not in homosexual men. The relevance of the perirhinal area for high order multimodal (olfactory and visual) object, social, and sexual processing is discussed.  相似文献   

17.
MRI connectomics methods treat the brain as a network and provide new information about its organization, efficiency, and mechanisms of disruption. The most commonly used method of defining network nodes is to register the brain to a standardized anatomical atlas based on the Brodmann areas. This approach is limited by inter-subject variability and can be especially problematic in the context of brain maturation or neuroplasticity (cerebral reorganization after brain damage). In this study, we combined different image processing and network theory methods and created a novel approach that enables atlas-free construction and connection-wise comparison of diffusion MRI-based brain networks. We illustrated the proposed approach in three age groups: neonates, 6-month-old infants, and adults. First, we explored a data-driven method of determining the optimal number of equal-area nodes based on the assumption that all cortical areas of the brain are connected and, thus, no part of the brain is structurally isolated. Second, to enable a connection-wise comparison, alignment to a “reference brain” was performed in the network domain within each group using a matrix alignment algorithm with simulated annealing. The correlation coefficients after pair-wise network alignment ranged from 0.6102 to 0.6673. To test the method’s reproducibility, one subject from the 6-month-old group and one from the adult group were scanned twice, resulting in correlation coefficients of 0.7443 and 0.7037, respectively. While being less than 1 due to parcellation and noise, statistically, these values were significantly higher than inter-subject values. Rotation of the parcellation largely explained the variability. Through the abstraction from anatomy, the developed framework allows for a fully network-driven analysis of structural MRI connectomes and can be applied to subjects at any stage of development and with substantial differences in cortical anatomy.  相似文献   

18.
Alzheimer’s disease (AD) is a well-known neurodegenerative disease that is associated with dramatic morphological abnormalities. The default mode network (DMN) is one of the most frequently studied resting-state networks. However, less is known about specific structural dependency or interactions among brain regions within the DMN in AD. In this study, we performed a Bayesian network (BN) analysis based on regional grey matter volumes to identify differences in structural interactions among core DMN regions in structural MRI data from 80 AD patients and 101 normal controls (NC). Compared to NC, the structural interactions between the medial prefrontal cortex (mPFC) and other brain regions, including the left inferior parietal cortex (IPC), the left inferior temporal cortex (ITC) and the right hippocampus (HP), were significantly reduced in the AD group. In addition, the AD group showed prominent increases in structural interactions from the left ITC to the left HP, the left HP to the right ITC, the right HP to the right ITC, and the right IPC to the posterior cingulate cortex (PCC). The BN models significantly distinguished AD patients from NC with 87.12% specificity and 81.25% sensitivity. We then used the derived BN models to examine the replicability and stability of AD-associated BN models in an independent dataset and the results indicated discriminability with 83.64% specificity and 80.49% sensitivity. The results revealed that the BN analysis was effective for characterising regional structure interactions and the AD-related BN models could be considered as valid and predictive structural brain biomarker models for AD. Therefore, our study can assist in further understanding the pathological mechanism of AD, based on the view of the structural network, and may provide new insights into classification and clinical application in the study of AD in the future.  相似文献   

19.

Background & Objectives

Cross-sectional magnetic resonance imaging (MRI) suggests that Parkinson’s disease (PD) is associated with changes in cerebral tissue volume, diffusion tensor imaging metrics, and perfusion values. Here, we performed a longitudinal multimodal MRI study—including structural, diffusion tensor imaging (DTI), and perfusion MRI—to investigate progressive brain changes over one year in a group of older PD patients at a moderate stage of disease.

Methods

Twenty-three non-demented PD (mean age (SD) = 69.5 (6.4) years, disease duration (SD) = 5.6 (4.3) years) and 23 matched control participants (mean age: 70.6 (6.8)) completed extensive neuropsychological and clinical assessment, and multimodal 3T MRI scanning at baseline and one year later. We used a voxel-based approach to assess change over time and group-by-time interactions for cerebral structural and perfusion metrics.

Results

Compared to controls, in PD participants there was localized grey matter atrophy over time in bilateral inferior and right middle temporal, and left orbito-frontal cortices. Using a voxel-based approach that focused on the centers of principal white matter tracts, the PD and control cohorts exhibited similar levels of change in DTI metrics. There was no significant change in perfusion, cognitive, or motor severity measures.

Conclusions

In a cohort of older, non-demented PD participants, macrostructural MRI detected atrophy in the PD group compared with the control group in temporal and orbito-frontal cortices. Changes in diffusion MRI along principal white matter tracts over one year were found, but this was not differentially affected by PD.  相似文献   

20.
We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules’ local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly’s entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel’s model integration by combining independently developed models of the retina and lamina neuropils in the fly’s visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel’s ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel’s communication performance both over the number of interface ports exposed by an emulation’s constituent modules and the total number of modules comprised by an emulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号