首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evidence suggests that chronic inflammation, mitochondrial dysfunction, and oxidative stress play significant and perhaps synergistic roles in Parkinson's disease (PD), where the primary pathology is significant loss of the dopaminergic neurons in the substantia nigra. The use of anti-inflammatory drugs for PD treatment has been proposed, and inhibition of cyclo-oxygenase-2 (COX-2) or activation of peroxisome proliferator-activated receptor gamma (PPAR-gamma) yields neuroprotection in MPTP-induced PD. Lipopolysaccharide (LPS) induces inflammation-driven dopaminergic neurodegeneration. We tested the hypothesis that celecoxib (Celebrex, COX-2 inhibitor) or pioglitazone (Actos, PPAR-gamma agonist) will reduce the LPS-induced inflammatory response, spare mitochondrial bioenergetics, and improve nigral dopaminergic neuronal survival. Rats were treated with vehicle, celecoxib, or pioglitazone and were intrastriatally injected with LPS. Inflammation, mitochondrial dysfunction, oxidative stress, decreased dopamine, and nigral dopaminergic neuronal loss were observed post-LPS. Celecoxib and pioglitazone provided neuroprotective properties by decreasing inflammation and restoring mitochondrial function. Pioglitazone also attenuated oxidative stress and partially restored striatal dopamine as well as demonstrated dopaminergic neuroprotection and reduced nigral microglial activation. In summary, intrastriatal LPS served as a model for inflammation-induced dopaminergic neurodegeneration, anti-inflammatory drugs provided protective properties, and pioglitazone or celecoxib may have therapeutic potential for the treatment of neuro-inflammation and PD.  相似文献   

2.

Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.

  相似文献   

3.
Neurofibrillary tangles (NFT) are a hallmark of Alzheimer's disease. The major neurofibrillary tangle component is tau that is truncated at Asp421 (Δtau), hyperphosphorylated and aggregates into insoluble paired helical filaments. Alzheimer's disease brains also exhibit signs of inflammation manifested by activated astrocytes and microglia, which produce cytotoxic agents among them prostaglandins. We show that prostaglandin (PG) J2, an endogenous product of inflammation, induces caspase-mediated cleavage of tau, generating Δtau, an aggregation prone form known to seed tau aggregation prior to neurofibrillary tangle formation. The initial event observed upon PGJ2-treatment of human neuroblastoma SK-N-SH cells was the build-up of ubiquitinated (Ub) proteins indicating an early disruption of the ubiquitin-proteasome pathway. Apoptosis kicked in later, manifested by caspase activation and caspase-mediated cleavage of tau at Asp421 and poly (ADP-ribose) polymerase. Furthermore, cathepsin inhibition stabilized Δtau suggesting its lysosomal clearance. Upon PGJ2-treatment tau accumulated in a large perinuclear aggregate. In rat E18 cortical neuronal cultures PGJ2-treatment also generated Δtau detected in dystrophic neurites. Levels of Δtau were diminished by caspase 3 knockdown using siRNA. PGD2, the precursor of PGJ2, produced some Δtau. PGE2 generated none. Our data suggest a potential sequence of events triggered by the neurotoxic product of inflammation PGJ2 leading to tau pathology. The accumulation of Ub proteins is an early response. If cells fail to overcome the toxic effects induced by PGJ2, including accumulation of Ub proteins, apoptosis kicks in triggering caspase activation and tau cleavage, the clearance of which by cathepsins could be compromised culminating in tau pathology. Our studies are the first to provide a mechanistic link between inflammation and tau pathology.  相似文献   

4.
Uncontrolled and chronic microglia activation has been implicated in the process of dopaminergic neuron degeneration in sporadic Parkinson??s disease (PD). Elevated proinflammatory mediators, presumably from activated microglia (e.g., cytokines, PGE2, nitric oxide, and superoxide radical), have been observed in PD patients and are accompanied by dopaminergic neuronal loss. Preclinical studies have demonstrated the deleterious effects of proinflammatory mediators in various in vivo and in vitro models of PD. The use of in vitro studies provides a unique tool to investigate the interaction between neurons and microglia and is especially valuable when considering the role of activated microglia in neuronal death. Here we summarize findings highlighting the potential mechanisms of microgliamediated neurodegeneration in PD.  相似文献   

5.
The long‐term consequences of traumatic brain injury (TBI) are closely associated with the development of histopathological deficits. Notably, TBI may predispose long‐term survivors to age‐related neurodegenerative diseases, such as Parkinson's disease (PD), which is characterized by a gradual degeneration of the nigrostriatal dopaminergic neurons. However, preclinical studies on the pathophysiological changes in substantia nigra (SN) after chronic TBI are lacking. In the present in vivo study, we examined the pathological link between PD‐associated dopaminergic neuronal loss and chronic TBI. Sixty days post‐TBI, rats were euthanized and brain tissues harvested. Immunostaining was performed using tyrosine hydroxylase (TH), an enzyme required for the synthesis of dopamine in neurons, α‐synuclein, a presynaptic protein that plays a role in synaptic vesicle recycling, and major histocompatibility complex II (MHCII), a protein found in antigen presenting cells such as inflammatory microglia cells, all key players in PD pathology. Unbiased stereology analyses revealed significant decrease of TH‐positive expression in the surviving dopaminergic neurons of the SN pars compacta (SNpc) relative to sham control. In parallel, increased α‐synuclein accumulation was detected in the ipsilateral SN compared to the contralateral SN in TBI animals or sham control. In addition, exacerbation of MHCII+ cells was recognized in the SN and cerebral peduncle ipsilateral to injury relative to contralateral side and sham control. These results suggest α‐synuclein as a pathological link between chronic effects of TBI and PD symptoms as evidenced by significant overexpression and abnormal accumulation of α‐synuclein in inflammation‐infiltrated SN of rats exposed to chronic TBI. J. Cell. Physiol. 230: 1024–1032, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

6.
Neurofibrillary tangles (NFTs) are hallmarks of Alzheimer''s disease (AD). The main component of NFTs is TAU, a highly soluble microtubule-associated protein. However, when TAU is cleaved at Asp421 by caspases it becomes prone to aggregation leading to NFTs. What triggers caspase activation resulting in TAU cleavage remains unclear. We investigated in rat cortical neurons a potential coordination between proteasome impairment and caspase activation. We demonstrate that upon proteasome inhibition, the early accumulation of detergent-soluble ubiquitinated (SUb) proteins paves the way to caspase activation and TAU pathology. This occurs with two drugs that inhibit the proteasome by different means: the product of inflammation prostaglandin J2 (PGJ2) and epoxomicin. Our results pinpoint a critical early event, that is, the buildup of SUb proteins that contributes to caspase activation, TAU cleavage, TAU/Ub-protein aggregation and neuronal death. Furthermore, to our knowledge, we are the first to demonstrate that elevating cAMP in neurons with dibutyryl-cAMP (db-cAMP) or the lipophilic peptide PACAP27 prevents/diminishes caspase activation, TAU cleavage and neuronal death induced by PGJ2, as long as these PGJ2-induced changes are moderate. db-cAMP also stimulated proteasomes, and mitigated proteasome inhibition induced by PGJ2. We propose that targeting cAMP/PKA to boost proteasome activity in a sustainable manner could offer an effective approach to avoid early accumulation of SUb proteins and later caspase activation, and TAU cleavage, possibly preventing/delaying AD neurodegeneration.  相似文献   

7.
The etiology of sporadic Parkinson's disease (PD) remains unknown. Increasing evidence has suggested a role for inflammation in the brain in the pathogenesis of PD. However, it has not been clearly demonstrated whether microglial activation, the most integral part of the brain inflammatory process, will result in a delayed and progressive degeneration of dopaminergic neurons in substantia nigra, a hallmark of PD. We report here that chronic infusion of an inflammagen lipopolysaccharide at 5 ng/h for 2 weeks into rat brain triggered a rapid activation of microglia that reached a plateau in 2 weeks, followed by a delayed and gradual loss of nigral dopaminergic neurons that began at between 4 and 6 weeks and reached 70% by 10 weeks. Further investigation of the underlying mechanism of action of microglia-mediated neurotoxicity using rat mesencephalic neuron-glia cultures demonstrated that low concentrations of lipopolysaccharide (0.1-10 ng/mL)-induced microglial activation and production of neurotoxic factors preceded the progressive and selective degeneration of dopaminergic neurons. Among the factors produced by activated microglia, the NADPH oxidase-mediated release of superoxide appeared to be a predominant effector of neurodegeneration, consistent with the notion that dopaminergic neurons are particularly vulnerable to oxidative insults. This is the first report that microglial activation induced by chronic exposure to inflammagen was capable of inducing a delayed and selective degeneration of nigral dopaminergic neurons and that microglia-originated free radicals play a pivotal role in dopaminergic neurotoxicity in this inflammation-mediated model of PD.  相似文献   

8.
Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson''s disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.  相似文献   

9.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder mostly affecting the aging population over sixty. Cardinal symptoms including, tremors, muscle rigidity, drooping posture, drooling, walking difficulty, and autonomic symptoms appear when a significant number of nigrostriatal dopaminergic neurons are already destroyed. Hence we need early, sensitive, specific, and economical peripheral and/or central biomarker(s) for the differential diagnosis, prognosis, and treatment of PD. These can be classified as clinical, biochemical, genetic, proteomic, and neuroimaging biomarkers. Novel discoveries of genetic as well as nongenetic biomarkers may be utilized for the personalized treatment of PD during preclinical (premotor) and clinical (motor) stages. Premotor biomarkers including hyper-echogenicity of substantia nigra, olfactory and autonomic dysfunction, depression, hyposmia, deafness, REM sleep disorder, and impulsive behavior may be noticed during preclinical stage. Neuroimaging biomarkers (PET, SPECT, MRI), and neuropsychological deficits can facilitate differential diagnosis. Single-cell profiling of dopaminergic neurons has identified pyridoxal kinase and lysosomal ATPase as biomarker genes for PD prognosis. Promising biomarkers include: fluid biomarkers, neuromelanin antibodies, pathological forms of α-Syn, DJ-1, amyloid β and tau in the CSF, patterns of gene expression, metabolomics, urate, as well as protein profiling in the blood and CSF samples. Reduced brain regional N-acetyl-aspartate is a biomarker for the in vivo assessment of neuronal loss using magnetic resonance spectroscopy and T2 relaxation time with MRI. To confirm PD diagnosis, the PET biomarkers include [18F]-DOPA for estimating dopaminergic neurotransmission, [18F]dG for mitochondrial bioenergetics, [18F]BMS for mitochondrial complex-1, [11C](R)-PK11195 for microglial activation, SPECT imaging with 123Iflupane and βCIT for dopamine transporter, and urinary salsolinol and 8-hydroxy, 2-deoxyguanosine for neuronal loss. This brief review describes the merits and limitations of recently discovered biomarkers and proposes coenzyme Q10, mitochondrial ubiquinone-NADH oxidoreductase, melatonin, α-synculein index, Charnoly body, and metallothioneins as novel biomarkers to confirm PD diagnosis for early and effective treatment of PD.  相似文献   

10.
11.
12.
13.
ObjectivesParkinson''s disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored.Materials and MethodsAn acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation‐related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP‐challenged mice.ResultsThe receptor for colony‐stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397‐formulated diet for 21 days. Microglial depletion downregulated both pro‐inflammatory and anti‐inflammatory molecule expression at baseline and after MPTP administration. At 1d post‐MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397‐fed mice, but not in control diet (CD)‐fed mice. However, partial microglial depletion in mice exerted little effect on MPTP‐induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication.ConclusionsMicroglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.  相似文献   

14.
Although the cause of Parkinson's disease (PD) is unknown, data suggest roles for environmental factors that may sensitize dopaminergic neurons to age-related dysfunction and death. Based upon epidemiological data suggesting roles for dietary factors in PD and other age-related neurodegenerative disorders, we tested the hypothesis that dietary folate can modify vulnerability of dopaminergic neurons to dysfunction and death in a mouse model of PD. We report that dietary folate deficiency sensitizes mice to MPTP-induced PD-like pathology and motor dysfunction. Mice on a folate-deficient diet exhibit elevated levels of plasma homocysteine. When infused directly into either the substantia nigra or striatum, homocysteine exacerbates MPTP-induced dopamine depletion, neuronal degeneration and motor dysfunction. Homocysteine exacerbates oxidative stress, mitochondrial dysfunction and apoptosis in human dopaminergic cells exposed to the pesticide rotenone or the pro-oxidant Fe(2+). The adverse effects of homocysteine on dopaminergic cells is ameliorated by administration of the antioxidant uric acid and by an inhibitor of poly (ADP-ribose) polymerase. The ability of folate deficiency and elevated homocysteine levels to sensitize dopaminergic neurons to environmental toxins suggests a mechanism whereby dietary folate may influence risk for PD.  相似文献   

15.
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons and a substantial decrease in the neurotransmitter dopamine in the nigro-striatal region of the brain. Increased markers of oxidative stress, activated microglias and elevated levels of pro-inflammatory cytokines have been identified in the brains of patients with PD. Although the precise mechanism of loss of neurons in PD remains unclear, these findings suggest that microglial activation may contribute directly to loss of dopaminergic neurons in PD patients. In the present study, we tested the hypothesis that activated microglia induces nitric oxide-dependent oxidative stress which subsequently causes death of dopaminergic neuronal cells in culture. We employed lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) as a reactive microglial model and SH-SY5Y cells as a model for human dopaminergic neurons. LPS stimulation of macrophages led to increased production of nitric oxide in a time and dose dependent manner as well as subsequent generation of other reactive nitrogen species such as peroxynitrite anions. In co-culture conditions, reactive macrophages stimulated SH-SY5Y cell death characterized by increased peroxynitrite concentrations and nitration of alpha-synuclein within SH-SY5Y cells. Importantly 1400W, an inhibitor of the inducible nitric oxide synthase provided protection from cell death via decreasing the levels of nitrated alpha-synuclein. These results suggest that reactive microglias could induce oxidative stress in dopaminergic neurons and such oxidative stress may finally lead to nitration of alpha-synuclein and death of dopaminergic neurons in PD.  相似文献   

16.
Neuroinflammation mediated by microglia has been identified as vital pathogenesis in Parkinson's disease (PD). This study aimed to investigate the role and potential regulatory mechanism of microRNA-330 in the lipopolysaccharide (LPS)-induced chronic neuroinflammatory model. Primary microglia chronic inflammation model and PD animal model were established by LPS treatment. Bulged microRNA-330 sponges containing six microRNA binding sites were constructed and delivered by plasmid or recombinant adeno-associated virus (rAAV2)/5-green fluorescent protein (GFP) vector. The expression levels of microRNA-330 were assessed by a quantitative real-time polymerase chain reaction. Primary microglia polarization was determined by flow cytometry; meanwhile, dopamine and pro-(anti-)inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Expression levels of GFAP, lba1, inducible nitric oxide synthase (iNOS), Arg1, SHIP1, cytoplasmic, and nuclear factor-κB (NF-κB) were analyzed by Western blot. The behavioral deficit was determined by the rotarod test. The expression of microRNA-330 increased in the first 4 days and reached a plateau subsequently after LPS treatment. The sponges-mediated repression effect on M1 polarization was gradually enhanced with time. Treatment of miR-330 sponges increased the SHIP1 and Arg1 expression, and decreased the translocation of NF-κB and iNOS expression, suggesting the repression of inflammation. In the LPS-induced PD mice, administration of rAAV-sponge-GFP suppressed activation of microglia, downregulated proinflammatory cytokines, resumed the secretion of dopamine, rescued the dopaminergic neurons, and alleviated motor dysfunction. Our results demonstrated that microRNA-330 sponges could sustainably suppress LPS-induced polarization of microglia both in vivo and in vitro probably by negatively regulating NF-κB activity via target SHIP1 in microglia, which might be a promising neuroprotective strategy in neurological diseases, such as PD.  相似文献   

17.
Shim JH  Yoon SH  Kim KH  Han JY  Ha JY  Hyun DH  Paek SH  Kang UJ  Zhuang X  Son JH 《Mitochondrion》2011,11(5):707-715
The nature of mitochondrial dysfunction in dopaminergic neurons in familial Parkinson's disease (PD) is unknown. We characterized the pathophenotypes of dopaminergic neuronal cells that were deficient in PINK1 or DJ-1, genes with mutations linked to familial PD. Both PINK1- and DJ-1-deficient dopaminergic neurons had the increased production of ROS, severe mitochondrial structural damages and complex I deficits. A striking decrease in complex IV activity was also prominent by the PINK1-deficiency. The complex I deficits were relatively PD-specific and were significantly improved by an antioxidant Trolox. These data suggest that mitochondrial deficits are severe in dopaminergic neurons in familial PD and antioxidant-mediated functional recovery is feasible.  相似文献   

18.
Accumulating evidences suggest that neuroinflammation is a pathological hallmark of Parkinson’s disease (PD), a neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). MicroRNAs have been recently recognized as crucial regulators of inflammatory responses. Here, we found significant downregulation of microRNA-30e (miR-30e) in SNpc of MPTP-induced PD mice. Next, we employed miR-30e agomir to upregulate miR-30e expression in MPTP-treated mice. Our results showed that delivery of miR-30e agomir remarkably improved motor behavioral deficits and neuronal activity, and inhibited the loss of dopamine neurons. Moreover, the increased α-synuclein protein expression in SNpc of MPTP-PD mice was alleviated by the upregulation of miR-30e. Further, miR-30e agomir administration also attenuated the marked increase of inflammatory cytokines, such as TNF-α, COX-2, iNOS, and restored the decreased secretion of BDNF in SNpc. In addition, we demonstrated for the first time that miR-30e directly targeted to Nlrp3, thus suppressing Nlrp3 mRNA and protein expression. Finally, miR-30e upregulation significantly inhibited the activation of Nlrp3 inflammasome as evident from the decreased Nlrp3, Caspase-1 and ASC expressions and IL-18 and IL-1β secretions. Taken together, our study demonstrates that miR-30e ameliorates neuroinflammation in the MPTP model of PD by decreasing Nlrp3 inflammasome activity. These findings suggesting that miR30e may be a key inflammation-mediated molecule that could be a potential target for PD therapeutics.  相似文献   

19.
Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号