首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 998 毫秒
1.
The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.  相似文献   

2.
Common Terns nesting at Bermuda are isolated by 1,000–4,000?km from other populations of the species around the North Atlantic Ocean. This population experienced a severe demographic bottleneck as a result of a hurricane in 2003 and was subsequently re-established by four males and four females. Using seven microsatellite loci, we compared the genetic diversity of the pre- and post-bottleneck populations, compared the genetic profile of the Bermuda population with those of other populations around the North Atlantic Ocean and mainland Europe, and assessed the potential contribution of immigration to genetic diversity. We found a loss of genetic diversity (number of alleles and heterozygosity) in the post-bottleneck Bermudian population (4.6–2.9 and 0.56–0.52, respectively). We also report significant differentiation among all sampled locations (global FST?=?0.16) with no evidence for immigration into Bermuda. Common Terns from the Azores were genetically more similar to those from mainland North America than to those from Bermuda or mainland Europe. Our results suggest that the critically endangered population in Bermuda is genetically distinct and requires continued and enhanced conservation priority.  相似文献   

3.
Viruses that infect the marine cyanobacterium Prochlorococcus have the potential to impact the growth, productivity, diversity and abundance of their hosts. In this study, changes in the microdiversity of cyanomyoviruses were investigated in 10 environmental samples taken along a North–South Atlantic Ocean transect using a myoviral-specific PCR-sequencing approach. Phylogenetic analyses of 630 viral g20 clones from this study, with 786 published g20 sequences, revealed that myoviral populations in the Atlantic Ocean had higher diversity than previously reported, with several novel putative g20 clades. Some of these clades were detected throughout the Atlantic Ocean. Multivariate statistical analyses did not reveal any significant correlations between myoviral diversity and environmental parameters, although myoviral diversity appeared to be lowest in samples collected from the north and south of the transect where Prochlorococcus diversity was also lowest. The results were correlated to the abundance and diversity of the co-occurring Prochlorococcus and Synechococcus populations, but revealed no significant correlations to either of the two potential host genera. This study provides evidence that cyanophages have extremely high and variable diversity and are distributed over large areas of the Atlantic Ocean.  相似文献   

4.
We present data on the genetic diversity and phylogenetic affinities of N2-fixing unicellular cyanobacteria in the plankton of the tropical North Atlantic Ocean. Our dinitrogenase gene (nifH) sequences grouped together with a group of cyanobacteria from the subtropical North Pacific; another subtropical North Pacific group was only distantly related. Most of the 16S ribosomal DNA sequences from our tropical North Atlantic samples were closely allied with sequences from a symbiont of the diatom Climacodium frauenfeldianum. These findings suggest a complex pattern of evolutionary and ecological divergence among unicellular cyanobacteria within and between ocean basins.  相似文献   

5.
Aim Parasites with global distributions and wide host spectra provide excellent models for exploring the factors that drive parasite diversification. Here, we tested the relative force of host and geography in shaping population structure of a widely distributed and common ectoparasite of colonial seabirds, the tick Ixodes uriae. Location Two natural geographic replicates of the system: numerous seabird colonies of the North Pacific and North Atlantic Ocean basins. Methods Using eight microsatellite markers and tick samples from a suite of multi‐specific seabird colonies, we examined tick population structure in the North Pacific and compare patterns of diversity and structure to those in the Atlantic basin. Analyses included population genetic estimations of diversity and population differentiation, exploratory multivariate analyses, and Bayesian clustering approaches. These different analyses explicitly took into account both the geographic distance among colonies and host use by the tick. Results Overall, little geographic structure was observed among Pacific tick populations. However, host‐related genetic differentiation was evident, but was variable among host types and lower than in the North Atlantic. Main conclusions Tick population structure is concordant with the genetic structure observed in seabird host species within each ocean basin, where seabird populations tend to be less structured in the North Pacific than in the North Atlantic. Reduced tick genetic structure in the North Pacific suggests that host movement among colonies, and thus tick dispersal, is higher in this region. In addition to information on parasite diversity and gene flow, our findings raise interesting questions about the subtle ways that host behaviour, distribution and phylogeographic history shape the genetics of associated parasites across geographic landscapes.  相似文献   

6.
In the present study, we examined the divergence time and the magnitude of gene flow between two distantly separated populations of North Pacific light fish Maurolicus japonicus, one in the southern part of the East Sea (off Korea) and the other in the Southeast Atlantic Ocean (off Namibia). The mitochondrial 16SrDNA sequences (524 base pairs) obtained from the two populations were analyzed using the isolation with migration (IM) coalescent method as well as the conventional F ST statistic and a phylogeographic method. A significant nonzero F ST value (0.176, P<0.05) indicated genetic differentiation between the two populations. The low level of nucleotide diversity compared to the moderately high level of haplotype diversity implied that the populations have experienced a bottleneck followed by rapid growth in both populations. IM analysis suggested that these two populations most likely split approximately 500?C800 K years ago during the Pleistocene climatic oscillations and that gene flow has occurred unidirectionally from the Southeast Atlantic population to the East Sea population. Nested clade phylogeographic analysis supports restricted gene flow between the two populations.  相似文献   

7.
The silky shark, Carcharhinus falciformis, is a large-bodied, oceanic-coastal, epipelagic species found worldwide in tropical and subtropical waters. Despite its commercial importance, concerns about overexploitation, and likely ecological significance of this shark as an upper trophic-level predator, understanding of its population dynamics remains unclear for large parts of its distribution. We investigated the genetic diversity, population structure and demographic history of the silky shark along the western Atlantic Ocean based on the use of 707 bp of the mitochondrial DNA control region (mtCR). A total of 211 silky sharks were sampled, originating from five areas along the western Atlantic Ocean. The mitochondrial sequences revealed 40 haplotypes, with overall haplotype and nucleotide diversities of 0.88 (± 0.012) and 0.005 (± 0.003), respectively. The overall population structure was significantly different among the five western Atlantic Ocean regions. Phylogenetic analysis of mtCR sequences from globally sourced silky shark samples revealed two lineages, comprising a western Atlantic lineage and western Atlantic—Indo-Pacific lineage that diverged during the Pleistocene Epoch. In general, tests for the demographic history of silky sharks supported a population expansion for both the global sample set and the two lineages. Although our results showed that silky sharks have high genetic diversity, the current high level of overexploitation of this species requires long-term, scientifically informed management efforts. We recommend that fishery management and conservation plans be done separately for the two western Atlantic matrilineal populations revealed here.  相似文献   

8.
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty‐eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic ΦST not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.  相似文献   

9.
Detection of population genetic structure of zooplankton at medium‐to‐small spatial scales in the absence of physical barriers has remained challenging and controversial. The large population sizes and high rates of gene flow characteristic of zooplankton have made resolution of geographical differentiation very difficult, especially when using few genetic markers and assuming equilibrium conditions. Next‐generation sequencing now allows simultaneous sampling of hundreds to thousands of genetic markers; new analytical approaches allow studies under nonequilibrium conditions and directional migration. Samples of the North Atlantic Ocean planktonic copepod, Centropages typicus, were analysed using restriction site‐associated DNA (RAD) sequencing on a PROTON platform. Although prior studies revealed no genetic differentiation of populations across the geographical range of the species, analysis of RAD tags showed significant structure across the North Atlantic Ocean. We also compared the likelihood for models of connectivity among NW Atlantic populations under various directional flow scenarios that replicate oceanographic conditions of the sampled domain. High‐density marker sampling with RAD sequencing markedly outperformed other technical and analytical approaches in detection of population genetic structure and characterization of connectivity of this high geneflow zooplankton species.  相似文献   

10.
Blue jack mackerel Trachurus picturatus collected at six sampling locations of the north-east Atlantic Ocean (Azores, Madeira, Canaries, and Matosinhos, Peniche and Portimão, mainland Portugal) and one location in the Mediterranean (Sicily), were used to examine the genetic structure of this species. Three mitochondrial gene regions (cytochrome c oxidase subunit I, cytochrome b and control region) were used to study the genetic structure of the species in Macaronesia, as well as to compare the genetic diversity of this region with published results from its eastern distribution. All markers indicated the absence of genetic structure among populations, with high indices of genetic diversity. These results suggest that the species went through a bottleneck event, followed by a recent population expansion. Moreover, the comparison with previously published results from the T. picturatus Mediterranean distribution suggests the existence of a single panmictic population throughout the species' full range. This was, however, an unexpected result since other methodologies have shown the presence of, at least, three different population-units in the NE Atlantic Ocean.  相似文献   

11.
The genetic population structure and genetic diversity of yellowtail kingfish Seriola lalandi from the coastal south‐eastern Pacific Ocean (SEP) were evaluated at spatiotemporal scale in order to understand the ecology of this species. Between 2012 and 2015, temporal and spatial population genetic structure and a low genetic diversity were detected in S. lalandi from SEP. These results suggest that S. lalandi specimens arriving annually from offshore to the SEP coast could come from at least two genetically distinct populations, revealing a particular life strategy (i.e. reproductive or habitat segregation) for this fish species. Therefore, the SEP coast might constitute a point of population mixing for this species. Additionally, the low genetic diversity of S. lalandi in the SEP could be a result of a founder effect or overfishing. Regardless of the process explaining the genetic diversity and structure of S. lalandi in this geographical area, this new information should be considered in order to implement successful fishery management of this resource in the South Pacific.  相似文献   

12.
13.
Once hunted to the brink of extinction, humpback whales (Megaptera novaeangliae) in the North Atlantic have recently been increasing in numbers. However, uncertain information on past abundance makes it difficult to assess the extent of the recovery in this species. While estimates of pre-exploitation abundance based upon catch data suggest the population might be approaching pre-whaling numbers, estimates based on mtDNA genetic diversity suggest they are still only a fraction of their past abundance levels. The difference between the two estimates could be accounted for by inaccuracies in the catch record, by uncertainties surrounding the genetic estimate, or by differences in the timescale to which the two estimates apply. Here we report an estimate of long-term population size based on nuclear gene diversity. We increase the reliability of our genetic estimate by increasing the number of loci, incorporating uncertainty in each parameter and increasing sampling across the geographic range. We report an estimate of long-term population size in the North Atlantic humpback of ~112,000 individuals (95 % CI 45,000–235,000). This value is 2–3 fold higher than estimates based upon catch data. This persistent difference between estimates parallels difficulties encountered by population models in explaining the historical crash of North Atlantic humpback whales. The remaining discrepancy between genetic and catch-record values, and the failure of population models, highlights a need for continued evaluation of whale population growth and shifts over time, and continued caution about changing the conservation status of this population.  相似文献   

14.
Geographical variation in two related seabird species, the razorbill (Alca torda) and common guillemot (Uria aalge), was investigated using sequence analysis of mitochondrial DNA (mtDNA) control regions. We determined the nucleotide sequence of the variable 5' segment of the control region in razorbills and common guillemots from breeding colonies across the Atlantic Ocean. The ecology and life history characteristics of razorbill and common guillemot are in many respects similar. They are both considered highly philopatric and have largely overlapping distributions in temperate and subarctic regions of the North Atlantic, yet the species were found to differ widely in the extent and spatial distribution of mtDNA variation. Moreover, the differences in genetic differentiation and diversity were in the opposite direction to that expected from a consideration of traditional classifications and current population sizes. Indices of genetic diversity were highest in razorbill and varied among colonies, as did genotype frequencies, suggestive of restrictions to gene flow. The distribution of genetic variation suggests that razorbills originated from a refugial population in the south-western Atlantic Ocean through sequential founder events and subsequent expansion in the east and north. In common guillemots, genetic diversity was low and there was a lack of geographical structure, consistent with a recent population bottleneck, expansion and gene flow. We suggest that the reduced level of genetic diversity and differentiation in the common guillemot is caused by an inherent propensity for repeated population bottlenecks and concomitantly unstable population structure related to their specialized feeding ecology.  相似文献   

15.
The deep sea is a vast and essentially continuous environment with few obvious barriers to gene flow. How populations diverge and new species form in this remote ecosystem is poorly understood. Phylogeographical analyses have begun to provide some insight into evolutionary processes at bathyal depths (<3000 m), but much less is known about evolution in the more extensive abyssal regions (>3000 m). Here, we quantify geographical and bathymetric patterns of genetic variation (16S rRNA mitochondrial gene) in the protobranch bivalve Ledella ultima, which is one of the most abundant abyssal protobranchs in the Atlantic with a broad bathymetric and geographical distribution. We found virtually no genetic divergence within basins and only modest divergence among eight Atlantic basins. Levels of population divergence among basins were related to geographical distance and were greater in the South Atlantic than in the North Atlantic. Ocean‐wide patterns of genetic variation indicate basin‐wide divergence that exceeds what others have found for abyssal organisms, but considerably less than bathyal protobranchs across similar geographical scales. Populations on either side of the Mid‐Atlantic Ridge in the North Atlantic differed, suggesting the Ridge might impede gene flow at abyssal depths. Our results indicate that abyssal populations might be quite large (cosmopolitan), exhibit only modest genetic structure and probably provide little potential for the formation of new species.  相似文献   

16.
Genetic variation at 5 microsatellite loci was analyzed for European hake Merluccius merluccius sampled from 9 different regions in the Atlantic Ocean and the Mediterranean Sea. Significant genetic differentiation was found between samples, suggesting a fine subdivision of Atlantic and Mediterranean hake stocks. These results are discussed in the context of the decline of demersal fish species, probably due to overfishing.  相似文献   

17.
Mitochondrial control region sequences of 141 alfonsino Beryx decadactylus sampled off the coast of South Carolina were compared with 164 sequences from B. decadactylus collected in the Azores for inferring population structure and demographic history of this deep-water teleost in the North Atlantic Ocean. Analysis of molecular variance showed that 100% of the genetic variation was found within populations, indicating an absence of population structure (Φ(ST) = -0· 003). Neutrality tests and mismatch distribution analyses of pooled sequences suggested that B. decadactylus in the North Atlantic Ocean have undergone population expansion. These results may indicate that transatlantic gene flow occurs, possibly through passive drift of larvae or adult migration. The potential of a shared stock between the eastern and western North Atlantic Ocean will need to be considered if a directed fishery for B. decadactylus were to develop in the U.S.A.  相似文献   

18.
In order to infer phylogenetic relationships between tuna species of the genus Thunnus, partial sequences of the mitochondrial cytochrome b and ATPase genes were determined in all eight species. Supplemental restriction analysis on the nuclear rRNA gene was also carried out. Pacific northern bluefin tuna (Thunnus thynnus orientalis) was found to have mtDNA distinct from that of the Atlantic subspecies (T. t. thynnus) but very similar to that from the species albacore (T. alaluga). In contrast, no differentiation in nuclear genome was observed between the Atlantic and Pacific northern bluefin tunas. The Atlantic northern bluefin and southern bluefin tunas possessed mtDNA sequences very similar to species of yellowfin tuna group and not so similar to albacore and bigeye tunas which were morphologically assigned to the bluefin tuna group. The molecular data indicate that (1) mtDNA from albacore has been incorporated into the Pacific population of northern bluefin tuna and has extensively displaced the original mtDNA, and (2) albacore is the earliest offshoot, followed by bigeye tuna in this genus, which is inconsistent with the phylogenetic relationships between these tuna species inferred from morphology. Correspondence to: S. Chow  相似文献   

19.
The basking shark (Cetorhinus maximus) is found in temperate waters throughout the world's oceans, and has been subjected to extensive exploitation in some regions. However, little is known about its current abundance and genetic status. Here, we investigate the diversity of the mitochondrial DNA control region among samples from the western North Atlantic, eastern North Atlantic, Mediterranean Sea, Indian Ocean and western Pacific. We find just six haplotypes defined by five variable sites, a comparatively low genetic diversity of pi=0.0013 and no significant differentiation between ocean basins. We provide evidence for a bottleneck event within the Holocene, estimate an effective population size (Ne) that is low for a globally distributed species, and discuss the implications.  相似文献   

20.
Quantifying patterns of genetic diversity and differentiation among populations of Arctic birds is fundamental for understanding past and ongoing population processes in the Arctic. However, the genetic differentiation of many important Arctic species remains uninvestigated. Here, phylogeography and population genetics were examined in the worldwide population of a small seabird, the little auk (dovekie, Alle alle)—the most numerous avian species of the Arctic ecosystem. Blood samples or feathers were collected from 328 little auks (325 from the nominate subspecies and 3 from the A. a. polaris) in nine main breeding aggregations in the northern Atlantic and one location from the Pacific Ocean. The mtDNA haplotypes of the two subspecies were not segregated into separate groups. Also, no genetic structure was found within the nominate race based on microsatellite markers. The level of genetic differentiation among populations was low yet significant (mean F ST = 0.005). Some pairwise F ST comparisons revealed significant differences, including those involving the most distant Pacific colony as well as among some Atlantic populations. Weak population differentiation following the model of isolation by distance in the little auk is similar to the patterns reported in other high-Arctic bird species, indicating that a lack of distinct genetic structure is a common phenomenon in the Arctic avifauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号