首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given that brain-derived neutrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in the adult hippocampus, here we examined signaling mechanisms in vivo in the hippocampus mediating BDNF modulation of long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the CA1 region of the dorsal hippocampus decreased extracellular-signal regulated kinase 2 (ERK2) and CREB activation and impaired LTM retention scores. Inhibition of ERK1/2 activation by PD098059 produced similar effects and also reduced CREB phosphorylation. In contrast, intrahippocampal administration of recombinant human BDNF increased ERK1/2 and CREB activation and facilitated LTM. Activated-p38, activated-PKC isoforms, and activated-AKT were unaltered after BDNF or anti-BDNF infusion. In addition, no changes were found on PKA and PKA catalytic subunits in nuclear samples. Thus, our results suggest that BDNF exerts its role in LTM formation in vivo in CA1 region of the hippocampus, at least in part, via CREB activation. Moreover, BDNF-induced CREB activation appears to be mediated mainly through the activation of ERK1/2 signaling pathway.  相似文献   

2.
Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 min after infusion. Phospho-p42 ERK levels were downregulated 15 min after infusion and returned to baseline 30 min after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus.  相似文献   

3.
4.
5.
OX2R activation induces PKC-mediated ERK and CREB phosphorylation   总被引:1,自引:0,他引:1  
Guo Y  Feng P 《Experimental cell research》2012,318(16):2004-2013
Deficiencies in brain orexins and components of mitogen activated protein kinase (MAPK) signaling pathway have been reported in either human depression or animal model of depression. Brain administration of orexins affects behaviors toward improvement of depressive symptoms. However, the documentation of endogenous linkage between orexin receptor activation and MAPK signaling pathway remains to be insufficient. In this study, we report the effects of orexin 2 receptor (OX2R) activation on cell signaling in CHO cells over-expressing OX2R and in mouse hypothalamus cell line CLU172. Short-term extracellular signal-regulated kinase (ERK) phosphorylation and long-term cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) phosphorylation were subsequently observed in CHO cells that over-express OX2R while 20 min of ERK phosphorylation was significantly detected in mouse adult hypothalamus neuron cell line CLU172. Orexin A, which can also activate OX2R, mediated ERK phosphorylation was as the same as orexin B in CHO cells. A MAPK inhibitor eliminated ERK phosphorylation but not CREB phosphorylation in CHO cells. Also, ERK and CREB phosphorylation was not mediated by protein kinase A (PKA) or calmodulin kinase (CaMK). However, inhibition of protein kinase C (PKC) by GF 109203X eliminated the phosphorylation of ERK and CREB in CHO cells. A significant decrease in ERK and CREB phosphorylation was observed with 1 μM GF 109203X pre-treatment indicating that the conventional and novel isoforms of PKC are responsible for CREB phosphorylation after OX2R activation. In contrast, ERK phosphorylation induced by orexin B in CLU172 cells cannot be inhibited by 1 μM of protein kinase C inhibitor. From above observation we conclude that OX2R activation by orexin B induces ERK and CREB phosphorylation and orexin A played the same role as orexin B. Several isoforms of PKC may be involved in prolonged CREB phosphorylation. Orexin B induced ERK phosphorylation in mouse hypothalamus neuron cells differs from CHO cell line and cannot be inhibited by PKC inhibitor GF 109203X. And hypothalamus neuron cells may use different downsteam pathway for orexin B induced ERK phosphorylation. This result supports findings that orexins might have anti-depressive roles.  相似文献   

6.
7.
Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway.  相似文献   

8.
Recently, increased attention has been directed towards medicinal extracts as potential new drug candidates for dementia. Ginger has long been used as an important ingredient in cooking and traditional herbal medicine. In particular, ginger has been known to have disease-modifying effects in Alzheimer's disease (AD). However, there is no evidence of which constituents of ginger exhibit therapeutic effects against AD. A growing number of experimental studies suggest that 6-shogaol, a bioactive component of ginger, may play an important role as a memory-enhancing and anti-oxidant agent against neurological diseases. 6-Shogaol has also recently been shown to have anti-neuroinflammatory effects in lipopolysaccharide (LPS)-treated astrocytes and animal models of Parkinson’s disease, LPS-induced inflammation and transient global ischemia. However, it is still unknown whether 6-shogaol has anti-inflammatory effects against oligomeric forms of the Aβ (AβO) in animal brains. Furthermore, the effects of 6-shogaol against memory impairment in dementia models are also yet to be investigated. In this study, we found that administration of 6-shogaol significantly reduced microgliosis and astrogliosis in intrahippocampal AβO-injected mice, ameliorated AβO and scopolamine-induced memory impairment, and elevated NGF levels and pre- and post-synaptic marker in the hippocampus. All these results suggest that 6-shogaol may play a role in inhibiting glial cell activation and reducing memory impairment in animal models of dementia.  相似文献   

9.
Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15–29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.  相似文献   

10.
11.
随着世界人口的老龄化,与年龄相关认知功能障碍的威胁越来越大.研究年龄相关认知功能损伤的发病机制及寻找有效的防治策略具有重要意义.我们之前的研究表明,衰老小鼠海马中S-亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR)显著升高,神经元特异性高表达GSNOR转基因小鼠在行为学检测中表现出认知功能障碍.然而,其分子机制仍不清楚.在本研究中发现,CREB信号通路在GSNOR高表达转基因小鼠及原代培养小鼠海马神经元中均被GSNOR下调.在Y迷宫中检测表明,连续7 d腹腔注射CREB激活剂川陈皮素,能改善GSNOR过表达小鼠的认知损伤.进一步通过恐惧箱实验及Y迷宫测试研究川陈皮素对自然衰老小鼠认知功能的作用,发现川陈皮素能显著提高自然衰老小鼠在Y迷宫测试中的正确选择率以及在恐惧箱中的冻结时间,表明川陈皮素能显著改善衰老相关的认知功能.同样,川陈皮素上调了CREB磷酸化以及PSD95和Glu R1的水平,表明CREB信号上调在改善自然衰老认知功能损伤中发挥了重要作用.本研究为衰老认知功能损伤机制及改善方法提供了新的依据,GSNOR转基因小鼠也可能成为一种新的认知功能损伤模型.  相似文献   

12.
丙戊酸钠活化大鼠海马和额叶ERK-1/2信号传导通路   总被引:2,自引:0,他引:2  
为探讨慢性服用丙戊酸钠对中枢神经系统细胞外调控激酶 (ERK) 1/ 2信号传导通路活性的影响 ,阐明丙戊酸钠治疗躁狂抑郁症作用的可能分子机制 ,将 4 0只雄性Wistar大鼠随机分为实验组和对照组 ,每组各 2 0只 .实验组大鼠用含丙戊酸钠的饲料喂养 ,对照组大鼠用常规饲料喂养 ,4周后取大鼠海马和额叶组织制备蛋白质样本 ,蛋白质印迹方法分析海马和额叶组织丝裂原活化的蛋白激酶激酶 (MEK)、ERK 1/ 2、MAPK活化的蛋白激酶 1(RSK1)、cAMP效应元件结合因子 (CREB)的磷酸化水平以及Bcl 2的表达水平 ,电泳迁移率变动分析(EMSA)方法分析海马和额叶组织激活蛋白 1(AP 1)的DNA结合活性 .与对照组比较 ,丙戊酸钠显著增强海马和额叶MEK、ERK 1/ 2、RSK1、CREB和AP1的活性 ,上调海马和额叶Bcl 2的表达 .结果表明 :慢性服用丙戊酸钠激活中枢神经系统ERK 1/ 2信号传导通路、上调中枢神经系统Bcl 2蛋白表达 ,这些作用可能与丙戊酸钠治疗躁狂抑郁症的作用有关  相似文献   

13.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has generated scientific interest because of its prevalence in the population. Studies indicate that physical exercise promotes neuroplasticity and improves cognitive function in animal models and in human beings. The aim of the present study was to investigate the effects of strength exercise on the hippocampal protein contents and memory performance in mice subjected to a model of sporadic AD induced by streptozotocin (STZ). Swiss mice received two injections of STZ (3 mg/kg, intracerebroventricular). After 21 days, they began physical training using a ladde. Mice performed this protocol for 4 weeks. After the last exercise training session, mice performed the Morris Water Maze test. The samples of hippocampus were excised and used to determine protein contents of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase-Ca2+ (ERK), calmodulin-dependent protein kinase (CAMKII) and cAMP-response element-binding protein (CREB) signalling pathway. Strength exercise was effective against the decrease in the time spent and distance travelled in the target quadrant by STZ-injected mice. Strength exercise was also effective against the reduction of mature BDNF, tropomyosin receptor kinase B and neuronal nuclear antigen (NeuN) hippocampal protein levels in STZ mice. The decrease in the hippocampal ratio of pERK/ERK, pCAMKII/CAMKII and pCREB/CREB induced by STZ was reversed by strength exercise. Strength exercise decreased Bax/Bcl2 ratio in the hippocampus of STZ-injected mice. The present study demonstrates that strength exercise modulated the hippocampal BDNF/ERK-CAMKII/CREB signalling pathway and suppressed STZ-induced spatial memory impairment in mice.  相似文献   

14.
Summary. It has been shown in various studies that increase in serotonergic neurotransmission is associated with increased memory consolidation whereas low brain 5HT impairs memory performance. In the first phase of our study we found that tryptophan (TRP) administration for 6 weeks increased plasma TRP and whole brain TRP, 5HT and 5HIAA levels. Many brain regions are involved in the learning process but particularly the hippocampus is known to have key role in learning and memory. The present study was therefore designed to investigate the effects of TRP loading particularly on hippocampal 5HT metabolism and cognitive performance in rats. TRP-treated rats demonstrated spatial enhancement as evidenced by a significant decrease in time to find the hidden food reward in radial arm maze test (RAM). The important finding of the present study was the greater increase in the 5HT metabolism in hippocampus than in any other brain region of the TRP-treated rats. This increased 5HT metabolism in the hippocampus emphasizes the involvement of this region in memory process.  相似文献   

15.
16.
An emerging body of data suggests that the early onset of Alzheimer’s disease (AD) is associated with decreased brain-derived neurotrophic factor (BDNF). Because BDNF plays a critical role in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, the up-regulation of BDNF may rescue cognitive impairments and learning deficits in AD. In the present study, we investigated the effects of hippocampal BDNF in a rat model of AD produced by a ventricle injection of amyloid-β1-42 (Aβ1-42). We found that a ventricle injection of Aβ1-42 caused learning deficits in rats subjected to the Morris water maze and decreased BDNF expression in the hippocampus. Chronic intra-hippocampal BDNF administration rescued learning deficits in the water maze, whereas infusions of NGF and NT-3 did not influence the behavioral performance of rats injected with Aβ1-42. Furthermore, the BDNF-related improvement in learning was ERK-dependent because the inhibition of ERK, but not JNK or p38, blocked the effects of BDNF on cognitive improvement in rats injected with Aβ1-42. Together, our data suggest that the up-regulation of BDNF in the hippocampus via activation of the ERK signaling pathway can ameliorate Aβ1-42-induced learning deficits, thus identifying a novel pathway through which BDNF protects against AD-related cognitive impairments. The results of this research may shed light on a feasible therapeutic approach to control the progression of AD.  相似文献   

17.
18.
目的:研究负重爬梯与有氧跑台运动对糖尿病大鼠学习记忆能力的改善效果并探索其可能分子机制。方法:40只雄性大鼠,随机分为正常对照组(NC)、糖尿病对照组(DC)、糖尿病负重爬梯组(DL)和糖尿病有氧跑台组(DA),以单次腹腔注射链脲佐菌素构建糖尿病大鼠模型。DL组在晚上进行负重爬梯训练,10次/组×3组/天,每次间歇2 min,6天/周×6周;DA组在同一时间进行20 m/min的跑台训练,30 min/d。于造模成功和运动干预结束后采用Morris水迷宫检测大鼠的学习记忆能力;第2次水迷宫测试结束后断颈处死大鼠,采用RT-QPCR法检测大鼠海马内脑源性神经营养因子(BDNF)、TRKB、CREB mRNA表达水平。结果:与NC组相比,DC组大鼠海马BDNF、CREB基因表达显著下降,学习记忆能力显著降低。与DC组相比,DL和DA组大鼠海马BDNF、CREB基因表达显著上调,学习能力显著提高;DL大鼠海马TrkB基因显著上调,大鼠空间记忆能力显著改善,而DA组大鼠海马TrkB基因无显著变化,大鼠空间记忆能力无改善,与DA组相比,DL组大鼠海马TRKB、CREB基因显著上调。结论:有氧跑台运动与负重爬梯运动介导BDNF/TrkB/CREB信号通路对糖尿病大鼠的学习能力均有促进作用,而负重爬梯运动对糖尿病大鼠记忆能力的改善优于有氧运动方式。  相似文献   

19.
Diabetic peripheral neuropathy (DPN) is one of the most common and troublesome complications of diabetes mellitus. It has been demonstrated that nerve growth factor (NGF) exerts a pivotal role in the regulation of neuronal growth and the promotion of DPN recovery. However, the exact molecular mechanisms are not well understood. Recent studies have indicated that as a novel therapeutic target, endoplasmic reticulum (ER) stress participates in the onset and progression of DPN. In the present study, it has been demonstrated that NGF prevents the sciatic nerve from degeneration and demyelination in DPN rats. Thus, RSC 96 cells, which retain the characteristic features of Schwann cells (SCs), were cultured in medium containing 30 mM glucose (high glucose, HG) to mimic SCs in DPN mice. The 50-ng/ml dose of NGF was identified to be the optimal concentration for treating an excessive ER stress level under HG conditions for 24 h. We found that NGF treatment significantly inhibits HG-induced ER stress and subsequently suppresses ER-related apoptosis. Further, NGF administration also activates the upstream signaling pathway of ER stress, PI3K/Akt/GSK3β signaling and ERK1/2 signaling. Co-treatment with the PI3K inhibitor LY294002 or ERK1/2 inhibitor U0126 significantly reverses the protective role of NGF on HG-induced excessive ER stress and subsequent apoptosis. These observations suggest that the neuroprotective role of NGF in DPN is mediated by the inhibition of excessive ER stress via the activation of the PI3K/Akt/GSK3β and ERK1/2 signaling pathways.  相似文献   

20.
Abstract: Lateral fluid-percussion brain injury in rats results in cognitive deficits, motor dysfunction, and selective hippocampal cell loss. Neurotrophic factors have been shown to have potential therapeutic applications in neurodegenerative diseases, and nerve growth factor (NGF) has been shown to be neuroprotective in models of excitotoxicity. This study evaluated the neuroprotective efficacy of intracerebral NGF infusion after traumatic brain injury. Male Sprague-Dawley rats received lateral fluid-percussion brain injury of moderate severity (2.1–2.3 atm). A miniosmotic pump was implanted 24 h after injury to infuse NGF (n = 34) or vehicle (n = 16) directly into the region of maximal cortical injury. Infusions of NGF continued until the animal was killed at 72 h, 1 week, or 2 weeks after injury. Animals were evaluated for cognitive dysfunction (Morris Water Maze) and regional neuronal cell loss (Nissl staining) at each of the three time points. Animals surviving for 1 or 2 weeks were also evaluated for neurobehavioral motor function. Although an improvement in memory scores was not observed at 72 h after injury, animals receiving NGF infusions showed significantly improved memory scores when tested at 1 or 2 weeks after injury compared with injured animals receiving vehicle infusions ( p < 0.05). Motor scores and CA3 hippocampal cell loss were not significantly different in any group of NGF-treated animals when compared with controls. These data suggest that NGF administration, in the acute, posttraumatic period following fluid-percussion brain injury, may have potential in improving post-traumatic cognitive deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号