首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.  相似文献   

2.
We are examining the archaeal virus STIV (Sulfolobus turreted icosahedral virus) in order to elucidate the details of its replication cycle and its interactions with its cellular host, Sulfolobus solfataricus. Infection of Sulfolobus by STIV initiates an unusual cell lysis pathway. One component of this pathway is the formation of pyramid-like structures on the surface of infected cells. Multiple seven-sided pyramid-like structures are formed on infected cells late in the STIV replication cycle. These pyramid-like structures are formed at sites where the Sulfolobus S-layer has been disrupted and through which the cellular membrane protrudes. It is through the pyramid-like structures that virus-induced cell lysis occurs in the final stages of the STIV replication cycle. The pathway and process by which these unusual lysis structures are produced appears to be novel to archaeal viruses and are not related to the well-characterized lysis mechanisms utilized by bacterial viruses. We are interested in elucidating both the viral and cellular components involved with STIV lysis of its infected cell. In particular, we are examining the potential role that Sulfolobus ESCRT (endosomal sorting complex required for transport)-like proteins play during viral infection and lysis. We hypothesize that STIV takes advantage of the Sulfolobus ESCRT machinery for virus assembly, transport and cellular lysis.  相似文献   

3.
Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as "vesicles" are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses.  相似文献   

4.

Background

New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism.

Methodology/Principal Findings

We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage.

Conclusions/Significance

The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.  相似文献   

5.
从超微结构水平上对葫芦藓(Funaria hygrometrica Hedw.)精子发生过程中胞间连接系统的结构及其变化动态进行了研究.结果表明,同一区中的相邻生精细胞由大量胞质桥相连,而不同区的细胞之间则不存在胞质桥.胞间连丝存在于套细胞之间以及套细胞与生精细胞之间,但它在生精细胞间不存在.在精子器发生的后期,当精子细胞壁开始降解时,同一个精子器中所有的精子细胞似乎都由扩大的胞质桥相互连接.胞质桥一直保持到精子分化的后期,最终精子细胞同步分化成精子.胞间连丝与胞质桥具有不同的内部结、分布以及生物发生机制,这表明它们在精子器的发育过程中可能扮演着不同的角色.  相似文献   

6.
Chen JH  Pang JL  Wang LL  Luo YH  Li X  Cao XL  Lin K  Ma W  Hu XH  Luo D 《Cell research》2006,16(5):499-506
Although much progress has been made in understanding how floral organ identity is determined during the floral development, less is known about how floral organ is elaborated in the late floral developmental stages. Here we describe a novel floral mutant, wrinkled petals and stamens1 (wps1), which shows defects in the development of petals and stamens. Genetic analysis indicates that wpsl mutant is corresponding to a single recessive locus at the long arm of chromosome 3. The early development of floral organs in wpsl mutant is similar to that in wild type, and the malfunction of the mutant commences in late developmental stages, displaying a defect on the appearance of petals and stamens. In the mature flower, petals and stamen filaments in the mutant are wrinkled or folded, and the cellular morphology under L1 layer of petals and stamen filaments is abnormal. It is found that the expression patterns of floral organ identity genes are not affected in wpsl mutants compared with that of wild type, consistent with the unaltered development of all floral organs. Furthermore, the identities of epidermal cells in different type of petals are maintained. The histological analysis shows that in wpsl flowers all petals are irregularly folded, and there are knotted structures in the petals, while the shape and arrangement of inner cells are malformed and unorganized. Based on these results, we propose that Wpsl acts downstream to the class B floral organ identity genes, and functions to modulate the cellular differentiation during the late flower developmental stages.  相似文献   

7.
Epithelial cells are known to be a major target for human cytomegalovirus (HCMV) infection; however, the analysis of virus-cell interactions has been difficult to approach due to the lack of in vitro models. In this study, we established a polarized epithelial cell model using a colon epithelial cell-derived cell line (Caco-2) that is susceptible to HCMV infection at early stages of cellular differentiation. Infection of polarized cells was restricted to the basolateral surface whereas virus was released apically, which was consistent with the apical and not basolateral surface localization of two essential viral glycoproteins, gB and gH. HCMV infection resulted in the development of a cytopathology characteristic of HCMV infection of colon epithelium in vivo, and infection did not spread from cell to cell. The inability of HCMV to infect Caco-2 cells at late stages of differentiation was due to a restriction at the level of viral entry and was consistent with the sequestration of a cellular receptor for HCMV. These observations provide the first evidence that restriction of HCMV replication in epithelial cells is due to a receptor-mediated phenomenon.  相似文献   

8.
9.
Although seminolipid has long been suspected to play an essential role in spermatogenesis because of its uniquely abundant and temporally regulated expression in the spermatocytes, direct experimental evidence has been lacking. We have tested the hypothesis by examining the testis of the UDP-galactose:ceramide galactosyltransferase-deficient mouse, which is incapable of synthesizing seminolipid. Spermatogenesis in homozygous affected males is arrested at the late pachytene stage and the spermatogenic cells degenerate through the apoptotic process. This stage closely follows the phase of rapid seminolipid synthesis in the wild-type mouse. These observations not only provide the first experimental evidence that seminolipid is indeed essential for normal spermatogenesis but also support the broader concept that cell surface glycolipids are important in cellular differentiation and cell-to-cell interaction.  相似文献   

10.
Nerves and blood vessels are branched structures, but whether their branching patterns are established independently or coordinately is not clear. Here we show that arteries, but not veins, are specifically aligned with peripheral nerves in embryonic mouse limb skin. Mutations that eliminate peripheral sensory nerves or Schwann cells prevent proper arteriogenesis, while those that disorganize the nerves maintain the alignment of arteries with misrouted axons. In vitro, sensory neurons or Schwann cells can induce arterial marker expression in isolated embryonic endothelial cells, and VEGF(164/120) is necessary and sufficient to mediate this induction. These data suggest that peripheral nerves provide a template that determines the organotypic pattern of blood vessel branching and arterial differentiation in the skin, via local secretion of VEGF.  相似文献   

11.
Dear Editor,Myocardial infarction(MI)is the irreversible cardiomyocyte death resulting from prolonged oxygen deprivation due to obstructed blood supply(ischemia),leading to contractile dysfunction and cardiac remodeling.In recent decades,stem cell transplantation has been extensively investigated for the repair of injured heart in animal studies and clinical trials(Kanelidis et al.,2017;Gyongyosi et al.,2018).  相似文献   

12.
13.
Cryosections and whole-mount preparations of the guinea pig small intestine and colon were single or double immunolabeled using the anti-c-Kit and protein gene product 9.5 antibodies. Immunolabeled specimens were observed under a confocal laser scanning microscope. The main findings of the present study are: (1) the distribution and profiles of three-dimensional structures of c-Kit-positive cellular networks in the small intestine and colon, and (2) the anatomical relations of c-Kit-positive cells to the enteric nerves in the layers. In the small intestine, c-Kit-positive cellular networks were observed at levels of the deep muscular plexus and myenteric plexus. The c-Kit-positive cellular networks ran along or overlay the nerve fibers at the deep muscular plexus, while they showed the reticular structures intermingled with the nerve elements at the myenteric plexus. In the colon, c-Kit-positive cellular networks were observed at levels of the submuscular plexus and myenteric plexus, and were further identified within the circular and longitudinal muscle layers as well as in the subserosal layer. In the circular muscle layer, c-Kit-positive cells surrounded the associated nerve fibers and extended several long processes toward the adjacent c-Kit-positive cells. The c-Kit-positive cellular networks within the longitudinal muscle layer as well as in the subserosal layer were not associated with the nerve fibers. In the layers of the intestinal wall with c-Kit-positive cells, the cellular networks of the interstitial cells were identified in ultrastructure. The characteristic profiles of c-Kit-positive cellular networks provide a morphological basis upon which to investigate the mechanisms regulating intestinal movement. Received: 14 July 1998 / Accepted: 2 September 1998  相似文献   

14.
15.
16.
The cellular and non-cellular components of fibrous septa formed at early and late stages in a sequential model of experimental hepatic fibrosis have been investigated using ultrastructural and immunocytochemical techniques. In the early septa, cells with intermediate features between lobular Ito cells and active fibroblasts were formed. These cells frequently displayed subplasmalemmal microfilaments (myofibroblast-like cells). Macrophages were also present. Scanty typical fibroblasts were present in the late septa. This cellular recruitment might be related to an extracellular glycoprotein-fibronectin-which is at present under investigation as a chemotactic factor for fibroblasts. Strong positivity for fibronectin in early septa and its sharp decrease in late septa seems to support this view. Fibroblasts and/or macrophages are the likely source of fibronectin synthesis.  相似文献   

17.
从超微结构水平上对葫芦藓(Funaria hygrometrica Hedw.)精子发生过程中胞间连接系统的结构及其变化动态进行了研究。结果表明,同一区中的相邻生精细胞由大量胞质桥相连,而不同区的细胞之间则不存在胞质桥。胞间连丝存在于套细胞之间以及套细胞与生精细胞之间, 但它在生精细胞间不存在。在精子器发生的后期,当精子细胞壁开始降解时,同一个精子器中所有的精子细胞似乎都由扩大的胞质桥相互连接。胞质桥一直保持到精子分化的后期,最终精子细胞同步分化成精子。胞间连丝与胞质桥具有不同的内部结、分布以及生物发生机制,这表明它们在精子器的发育过程中可能扮演着不同的角色。  相似文献   

18.
We examined the expression of acetylcholinesterase (AChE) in the nervous system and epidermal body structures during embryonic and larval development of two grasshopper species: Locusta migratoria and Schistocerca americana. Histochemical labelling was blocked by the enzyme inhibitors eserine and BW284c51, but not by iso-OMPA, showing that the staining reflected true AChE activity. The majority of staining was localized on the cell surface but granular intracellular staining was also visible in many cell bodies. In both species, the cellular expression of AChE followed a similar but complex spatiotemporal staining pattern. Initially, mainly epidermal tissue structures were stained in the various body appendages (stages 25%–30%). Labelling subsequently appeared in outgrowing neurons of the central nervous system (CNS) and in the nerves innervating the limbs and dorsal body wall (stages 30%–40%). The latter staining originated in motoneurons of the ventral nerve cord. In a third phase (after 45%), the somata of certain identified mechanosensory neurons started to express AChE activity, presumably reflecting cholinergic differentiation. Staining was also found in repo-positive glial cells of the CNS, longitudinal glia of connectives, glia of the stomatogastric nervous system and glial cells ensheathing peripheral nerves. Glial cells remained AChE-positive during larval to adult development, whereas motoneurons lost their AChE expression. The expression pattern in non-neuronal cells and glutamatergic motoneurons and the developmental appearance of AChE prior to synaptogenesis in the CNS suggest non-cholinergic functions of AChE during grasshopper embryogenesis. Financial support was provided by the Deutsche Forschungsgemeinschaft (Bi 262/7-1 and 262/11-1)  相似文献   

19.
Summary Intercellular bridges between developing germ cells were observed in human fetal ovaries at 10 to 20 weeks gestation. Bridges were frequently found between cells in early stages of degeneration, with similar regressive changes being present in the conjoined cells. In advanced stages of cellular degeneration, bridges were less frequently found and were generally distorted and partially disrupted. Similarity in appearance of adjacent degenerating cells was common, even in late stages of degeneration. These observations suggest that cellular interconnection may be responsible for synchronous degeneration of germ cells during oogenesis.The author thanks Mrs. Lucy A. Conner for her valuable technical assistance. This research was supported by U.S.P.H.S. grant HD-05727.  相似文献   

20.
The cartilage pattern of the developing chick limb changes along the proximal-distal (PD) axis. It is assumed that these spatial changes are brought about by differences in the cellular properties of distal mesoderm, the progress zone (PZ). To examine whether these differences are actually maintained in the individual cells composing the PZ, we dissociated early (stage 20) and late (stage 25) PZ tissues into single cells, then mixed and recombined them with ectodermal jackets. The recombinants were grafted to limb bud stumps and allowed to develop into limb-like structures. Early PZ cells were distributed within whole cartilage elements along the PD axis of the limb-like structures, while cells from late PZ participated only in the formation of distal cartilage elements.
A difference in distribution pattern between the cells of early and late PZ in mixed culture was also observed. Cells of early PZ aggregated rapidly in patches and formed cartilage nodules, while the cells of late PZ distributed in regions surrounding these cell aggregates and gradually differentiated to cartilage cells. These results suggest that the cellular properties in the PZ concerning the rate of chondrogenic aggregate formation change during limb bud development, and that this change may relate to the cartilage pattern formation along the PD axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号