首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diabetic nephropathy is one of the most serious complications of diabetes and the major cause of end-stage renal failure. Consequences of diabetic nephropathy include increased kidney size and glomerular volume, thickening of basement membranes and progressive accumulation of extracellular matrix. Reports in the literature support an association between increased secretion of inflammatory molecules, such as cytokines, growth factors and metalloproteinases, and development of diabetic nephropathy. We investigated the potential of granulocyte colony- stimulating factor (G-CSF) as a therapeutic candidate for preventing diabetic nephropathy. We used 21 8-week-old male rats; 14 were administered a single dose of 60 mg/kg streptozotocin (STZ) to induce diabetes. The rats were divided into three groups of seven: group 1, control; group 2, diabetic; group 3, diabetic plus G-CSF treatment. After 4 weeks, immunoexpressions of transforming growth factor β1 (TGF-β1), Akt and CD34 levels were measured in the kidney tissue. Blood glucose, urine protein and the glomerular area also were measured for each group. We found that G-CSF treatment decreased TGF-β1 immunoexpression, urine protein and glomerular area in kidneys of diabetic rats, and increased CD 34 and Akt immunoexpression in kidneys of diabetic rats. The effects of G-CSF were independent of blood glucose levels. G-CSF may be a useful therapeutic agent for preventing diabetic nephropathy.  相似文献   

2.
Background:Hyperglycemia and accumulation of advanced glycation end products (AGEs) play a significant role in the development of diabetic nephropathy. Andrographis paniculata (AP) is a plant with high flavonoid content with the potential to suppress oxidative stress activity in cells and tissue. This study was aimed to investigate the role of Andrographis paniculata extract (APE) in protecting kidney damage due to the formation of AGEs in the renal glomerulus in diabetic rats.Methods:A total of 30 male Sprague Dawley rats were randomly divided into five groups as follows: normal control group, streptozocin (STZ) induced diabetic group, STZ-induced diabetic group with AP extract (100 mg/kg BW), STZ-induced diabetic rats with AP extract (200 mg/kg BW), and STZ-induced diabetic rats with APE (400 mg/ kg BW). Blood glucose levels were measured before treatment and after treatment. Serum and urine parameters were determined. Antioxidant enzymes and lipid peroxide levels were determined in the kidney along with histopathological examination.Results:The finding of this study showed that treatment APE at the dose of 200 mg/kg and 400 mg/kg ameliorated kidney hypertrophy index. SOD, catalase, and GSH activities significantly decreased in the kidney of STZ-diabetic rats compared to the normal control rats. Treatment with APE significantly decreased malondialdehyde level at the dose of 200 and 400 mg/kg BW.Conclusion:This study revealed evidence for improving diabetic retinopathy in male rats treated with Andrographis paniculata extract. APE significantly decreased oxidative stress activities in kidney of diabetic rats.Key Words: Andrographis, Diabetic Nephropathies, Streptozocin, Rats, Oxidative Stress  相似文献   

3.
《Journal of lipid research》2017,58(12):2264-2274
Animal studies demonstrate that hyperlipidemia and renal lipid accumulation contribute to the pathogenesis of diabetic nephropathy (DN). We previously demonstrated that renal lipoproteins colocalize with biglycan, a renal proteoglycan. The purpose of this study was to determine whether prevention of renal lipid (apoB) accumulation attenuates DN. Biglycan-deficient and biglycan wild-type Ldlr−/− mice were made diabetic via streptozotocin and fed a high cholesterol diet. As biglycan deficiency is associated with elevated transforming growth factor-β (TGF-β), in some experiments mice were injected with either the TGF-β-neutralizing antibody, 1D11, or with 13C4, an irrelevant control antibody. Biglycan deficiency had no significant effect on renal apoB accumulation, but led to modest attenuation of DN with ∼30% reduction in albuminuria; however, biglycan deficiency caused a striking elevation in TGF-β. Use of 1D11 led to sustained suppression of TGF-β for approximately 8 weeks at a time. The 1D11 treatment caused decreased renal apoB accumulation, decreased albuminuria, decreased renal hypertrophy, and improved survival, compared with the 13C4 treatment. Thus, prevention of renal apoB accumulation is protective against development of DN. Furthermore, this study demonstrates that prevention of renal apoB accumulation is a mechanism by which TGF-β inhibition is nephroprotective.  相似文献   

4.
Kim HJ  Kong MK  Kim YC 《BMB reports》2008,41(10):710-715
This study investigated the effect of Phellodendri Cortex extract on hyperglycemia and diabetic nephropathy in streptozotocin-induced diabetic rats. Male Sprague-Dawley rats were divided into normal control (NC), diabetic control (DC), and diabetic treatment with Phellodendri Cortex extract (DP). Over a 4-week experimental period, Phellodendri Cortex extract was administered orally at 379 mg/kg BW/day. The final fasting serum glucose level, urine total protein level, and relative left kidney weight in the DP group were significantly lower than the DC group. Renal XO and SOD activities in the DP group were significantly lower than the DC group and renal CAT activity in the DP group was significantly higher than the DC group. Tubular epithelial change was reduced in the DP group compared to the DC group. These results indicated that Phellodendri Cortex can reduce glucose level and prevent or retard the development of diabetic nephropathy in streptozotocin-induced diabetic rats.  相似文献   

5.
Previous studies have demonstrated the importance of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of diabetic nephropathy in terms of inflammation, but the direct role of the MCP-1/CCR2 system on podocyte apoptosis under diabetic conditions has never been explored. In vitro, mouse podocytes were exposed to a medium containing 30?mM glucose (HG) with or without CCR2 siRNA or CCR2 inhibitor (RS102895). Podocytes were also treated with MCP-1 or TGF-β1 with or without anti-TGF-β1 antibody, CCR2 siRNA, or CCR2 inhibitor. In vivo, 20?db/m and 20?db/db mice were divided into two groups, and ten mice from each group were treated with RS102895. Western blot and Hoechst 33342 or TUNEL staining were performed to identify apoptosis. HG-induced apoptosis and TGF-β1 levels were significantly abrogated by CCR2 inhibition. In addition, treatment with MCP-1 directly induced apoptosis via CCR2. Moreover, TGF-β1- and MCP-1-induced apoptosis were significantly ameliorated by the inhibition of CCR2 and anti-TGF-β1 antibody, respectively. Glomerular expression of cleaved caspase-3 and apoptotic cells within glomeruli were also significantly increased in db/db mice compared to db/m mice, and these increases were significantly attenuated in db/db?+?RS102895 mice. These results suggest that interactions between the MCP-1/CCR2 system and TGF-β1 may contribute to podocyte apoptosis under diabetic conditions.  相似文献   

6.
Transforming growth factor-β (TGF-β) is known to promote the accumulation of extracellular matrix (ECM) and the development of diabetic nephropathy. Halofuginone, an analog of febrifugine, has been shown to block TGF-β1 signaling and subsequent type I collagen production. Here, the inhibitory effect of halofuginone on diabetic nephropathy was examined. Halofuginone suppressed Smad2 phosphorylation induced by TGF-β1 in cultured mesangial cells. In addition, the expression of TGF-β type 2 receptor decreased by halofuginone. Halofuginone showed an inhibitory effect on type I collagen and fibronectin expression promoted by TGF-β1. An in vivo experiment using db/db mice confirmed the ability of halofuginone to suppress mesangial expansion and fibronectin overexpression in the kidneys. Moreover, an analysis of urinary 8-OHdG level and dihydroethidium fluorescence revealed that halofuginone reduced oxidative stress in the glomerulus of db/db mice. These data indicate that halofuginone prevents ECM deposition and decreases oxidative stress, thereby suppressing the progression of diabetic nephropathy.  相似文献   

7.
Wang YY  Liu RX  Guo B  Xiao Y  Shi MJ  Pi MJ  Wen QY  Zhang GZ 《生理学报》2011,63(4):325-332
转化生长因子-β1(transforming growth factor-β1,TGF-β1)激活磷脂酰肌醇-3-激酶(phosphoinositide-3-kinase,PI3K)-蛋白激酶B(protein kinase B,PKB/Akt)通路与糖尿病肾病(diabetic nephropathy,DN)的发生发展密切相关,而第10号染色体缺失的磷酸酶和张力蛋白同源基因(phosphatase and tensin homology deleted on chromosome ten,PTEN)可以负调节PI3K-PKB/Akt通路。本研究旨在观察糖尿病大鼠肾组织PTEN的表达变化及其在DN发生发展中的可能作用。16只Sprague-Dawley大鼠分成正常对照组和糖尿病组(n=8)。尾静脉注射链脲菌素(streptozotocin,STZ)复制糖尿病大鼠模型;12周处死大鼠,检测相应生化指标并计算肾脏指数;HE染色观察肾组织病理学改变;免疫组化和Western blotting检测PTEN、TGF-β1、PI3Kp110α、Akt1、p-Akt1(Ser473)、纤维连接蛋白(fibronectin,...  相似文献   

8.
Diabetic nephropathy (DN) is the leading cause of death in diabetic patients and the current treatment options available have a limited significance. The insect galls of Quercus infectoria are traditionally important in the treatment of numerous diseases including diabetes. Hence, the present study was undertaken to evaluate the effect of Q. infectoria gall extract (QIGE) against experimental DN. Type 2 diabetes was induced by feeding rats with a high-fat diet (HFD) initially for 5 weeks, followed by a single intraperitoneal injection of streptozotocin (STZ, 35?mg/kg?bw/day). QIGE was administered to the rats orally at doses of 100 and 200?mg/kg?bw/day, respectively. At the end of the experimental period, various glycemic and renal function parameters were evaluated in the serum, urine and kidney tissues. The QIGE treatment significantly (p?p?via the inhibition of hyperglycemia-induced oxidative stress and renal TGF-β expression and is, therefore, a potential therapeutic agent in the treatment of diabetic complications, especially DN.  相似文献   

9.
目的:研究淫羊藿总黄酮(TFE)对链脲佐菌素(STZ)致糖尿病大鼠肾脏损伤的影响,并初步探讨其可能的作用机制。方法:健康雄性SD大鼠一次性尾静脉注射STZ(40 mg/kg)建立糖尿病模型。动物随机分成3组(n=10):对照组、模型组和TFE组(100 mg/kg,i.g.)。12周后,处死大鼠。测定空腹血糖,肾脏脏器系数,血清尿素氮(BUN)、肌酐(Cr)含量;测定肾组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量;Masson染色观察肾组织胶原纤维增生;免疫组化测定转化生长因子β1(TGF-β1)蛋白的表达。结果:与对照组比较,模型组肾脏脏器系数增大、肾功能下降、肾组织抗氧化能力降低;病理学可见肾小球、肾小管间质纤维化;同时TGF-β1蛋白表达水平上调。TFE组明显改善上述指标。结论:TFE对STZ致糖尿病大鼠肾脏损伤有明显的改善作用,其作用机制可能与抗氧化作用和抑制TGF-β1蛋白表达有关。  相似文献   

10.
BackgroundThe accumulation of advanced glycated end products (AGEs) in retinal blood vessels is one of the major etiological factors contributing to diabetic retinopathy. Aminoguanidine (AG) is one of the most extensively used inhibitors of AGEs formation. The aim of this study was to investigate whether AG could protect the development of diabetic retinopathy through inhibition of AGEs.MethodsRat diabetes was induced by intraperitoneal injection with streptozotocin (STZ). AG was given to rats in drinking water. Retina was extracted 3 and 6 months following STZ and AG administration. Immunochemistry and transmission electron microscope were used to detect the expression of AGEs and retina morphology.ResultsExtensive staining of AGEs was detected in retinal blood vessels of 3- and 6-month diabetic rats, while no significant staining was found in the control non-diabetic retina or AG treated groups. Pericyte loss, endothelial cell proliferation, increased ratio of endothelial cells/pericytes, acellular capillaries and capillary occlusion were observed in the retina of 6-month diabetic rats. The increased electron density of retinal capillary basement membrane, mitochondrial swelling in pericytes and endothelial cells were also found in 6-month diabetic rats. The 3-month diabetic rats and the AG-treated rats did not have similar morphological changes compared to control group. The AGEs staining in AG-treated rats was still weakly positive.ConclusionsAGEs plays pivotal roles in diabetic retinopathy. AGE deposition occurs prior to retinal microvasculature changes. AG could prevent the onset and development of diabetic retinopathy through inhibition of AGEs.  相似文献   

11.
高级糖化终末产物(advanced glycation end product,AGE)参与了糖尿病、动脉粥样硬化、癌症等多种疾病的发生和发展,尤其是其导致的糖尿病肾病(diabetic nephropathy,DN)是终末期肾衰竭的主要病因,因此探索以AGEs为靶点的DN治疗手段成为了国内外研究的热点。本文概述了国内外关于AGE参与DN的发病机制,靶向AGE的DN治疗策略,以及天然中药基于AGE为靶点干预DN的研究进展,初步探讨了靶向AGE的DN天然药物的筛选模型。  相似文献   

12.
目的动态观察链脲佐菌素(STZ)诱导的糖尿病大鼠血糖控制前后肾小管上皮细胞(TEC)中血管内皮生长因子(VEGF)、转化生长因子β1(TGF-β1)、Smad2/3、Smad4的表达情况,探讨四者在糖尿病大鼠TEC表型转变和肾间质纤维化中可能发挥的作用及相互关系。方法实验动物随机分为5组,依病程长短分为①A组(2周组),②B组(4周组),③C组(8周组),④D组(16周组),⑤E组(24周组),每组分别设有正常对照组(N组)和糖尿病组(a组);另外,16周、24周两组加设胰岛素治疗组(b组)。采用尾静脉注射STZ法复制糖尿病大鼠模型;免疫组织化学方法检测肾小管VEGF、TGF-β1、Smad2/3、Smad4及α-平滑肌肌动蛋白(-αSMA)和纤连蛋白(FN)的表达;Western blot检测肾皮质VEGF和TGF-β1蛋白;PAS染色光镜观察肾小管基底膜变化及细胞外基质沉积情况等形态学改变;生化方法测定血糖、血肌酐及24小时尿蛋白量。结果正常对照组VEGF、TGF-β1及Smad2/3、Smad4在肾小管均有少量表达,-αSMA在肾小管无表达;糖尿病组肾小管前述四者的表达均显著高于正常对照组,且从16周开始肾小管上皮细胞可见α-SMA蛋白阳性表达;糖尿病16周时肾小管VEGF、TGF-β1、Smad2/3、Smad4两两之间呈正相关;随糖尿病进展,α-SMA及FN在肾小管表达增多,24h尿蛋白增多,肾脏肥大指数增大,而VEGF、TGF-β1二者都分别和-αSMA、FN、24h尿蛋白及肾脏肥大指数呈正相关性;胰岛素治疗后,VEGF、TGF-β1、Smad2/3、Smad4及FN的表达都比糖尿病组明显下降,且各指标之间的正相关性依然存在,-αSMA蛋白则呈阴性表达。结论糖尿病肾病大鼠肾小管上皮细胞表达的VEGF、TGF-β1及Smad2/3、Smad4参与了TEC表型转变和肾间质纤维化的发生,并且VEGF和TGF-β1相互作用,共同促进了肾脏损害。胰岛素对DN大鼠TEMT和肾间质纤维化的影响可能部分是通过间接阻断VEGF、TGF-β1和Smad2/3、Smad4在TEC中的合成来实现的。  相似文献   

13.
Diabetic nephropathy is the common cause of leading to end stage of renal disease (ESRD). Satureja khozestanica essential oil (SKEO) was used as an antioxidant and antidiabetic for the inhibition of diabetic nephropathy. Forty male rats were uninephrectomized and divided in four groups randomly; group one as control, group two diabetic untreatment, groups three and four treatment with SKEO by 250 or 500 ppm in drinking water, respectively. Diabetes was induced in the second, third and fourth groups by alloxan injection subcutaneously. After eight weeks treatment, serum malondialdehyde, serum creatinine and serum urea were measured. The kidney paraffin sections were stained by periodic acid Schiff method. Glomerular volume and glomerular number were estimated by stereological rules. Glomerular sclerosis was studied semi-quantitatively. The means were compared by SPSS 13 software and Mann-Whitney test at p < 0.05. Satureja khozestanica essential oil (250 or 500 ppm) significantly inhibited the progression of glomerular hypertrophy, glomerular number loss, glomerulosclerosis, lipid peroxidation, serum urea and creatinine compared with the diabetic untreated group. The level of glomerular number, serum malondialdehyde, serum creatinine and urea in the treated groups was significantly maintained at the same level as that of the control group. In conclusion, satureja essential oil significantly can ameliorate glomerular hypertrophy, loss of glomerular number, glomerulosclerosis and attenuated serum urea and serum creatinine in diabetic rats.  相似文献   

14.
Up regulation of the transforming growth factor-beta 1 (TGF-β1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-β1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.  相似文献   

15.
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play important and diverse roles in the cardiovascular system. The anti-inflammatory, anti-apoptotic, pro-angiogenic, and anti-hypertensive properties of EETs in the cardiovascular system suggest a beneficial role for EETs in diabetic nephropathy. This study investigated the effects of endothelial specific overexpression of CYP2J2 epoxygenase on diabetic nephropathy in streptozotocin-induced diabetic mice. Endothelial CYP2J2 overexpression attenuated renal damage as measured by urinary microalbumin and glomerulosclerosis. These effects were associated with inhibition of TGF-β/Smad signaling in the kidney. Indeed, overexpression of CYP2J2 prevented TGF-β1-induced renal tubular epithelial-mesenchymal transition in vitro. These findings highlight the beneficial roles of the CYP epoxygenase-EET system in the pathogenesis of diabetic nephropathy.  相似文献   

16.
Zhang W  Miao J  Ma C  Han D  Zhang Y 《Peptides》2012,36(2):186-191
This study was designed to investigate the putative protective effect of β-casomorphin-7 on diabetic nephropathy in a rat model, and to explore the possible mechanism of this effect. SD rats were randomly divided into the following three groups: control group, diabetes group and β-casomorphin-7-treatment group. All rats were euthanized after 30 days with or without β-casomorphin-7 treatment. Biochemical parameters including blood glucose and renal function were quantified. The concentration of plasma TGF-β1 was measured by ELISA. Histopathological changes to the kidney were studied by Masson and Sirius red staining. Expressions of α-smooth muscle actin (α-SMA), E-cadherin, vimentin, cytokeratin19 and TGF-β1 mRNA in rat renal cortices were analyzed by real-time PCR. Changes in α-SMA and E-cadherin protein expression in rat renal cortices were quantified by Western blot. β-Casomorphin-7 treatment of diabetic rats reduced urinary glucose, urinary protein, serum creatinine, blood urinary nitrogen, plasma TGF-β1 and the ratio of kidney: body weight. Masson and Sirius red staining showed that β-casomorphin-7 treatment attenuated renal interstitial fibrosis in diabetic rats. Compared to the control rats, diabetic rats had elevated expressions of α-SMA, vimentin and TGF-β1 mRNA and α -SMA protein and decreased expression of E-cadherin and cytokeratin19 mRNA, and E-cadherin protein. β-Casomorphin-7 treatment of diabetic rats partially normalized these changes. Our results suggest that administration of β-casomorphin-7 attenuates renal interstitial fibrosis caused by diabetes. This protective effect may be associated, in part, with down regulation of epithelial-mesenchymal transition of renal tubular epithelial cells.  相似文献   

17.
Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. To prevent the development of this disease and to improve advanced kidney injury, effective therapies directed toward the key molecular target are required. In this paper, the efficacy of fenugreek to restore the kidney function of diabetic rats via its antioxidant and anti-inflammatory activities has been studied. Novel data showing the efficacy of fenugreek to attenuate progression of diabetic nephropathy and production of interleukin-6 (IL-6) in rats compared with a diabetic untreated group were obtained. Rats were classified into five groups; control, diabetic untreated, and three diabetic groups treated with fenugreek, rosiglitazone, and metformin. Treatment with fenugreek has been continued for 12 weeks. Fenugreek was found to significantly reduce the high levels of glucose, urea, creatinine, sodium, potassium, and IL-6 in serum compared with the diabetic untreated group. In addition, levels of malondialdehyde and IL-6 in the kidney homogenate were significantly reduced as a result of the fenugreek treatment compared with the diabetic untreated group. Moreover, concentration of GSH and the activity of both superoxide dismutase and catalase were considerably increased in the diabetic treated groups compared with the diabetic untreated group. Furthermore, glomerular mesangial expansion was reduced in the treated animal groups. These findings suggest a therapeutic potential of fenugreek against diabetic nephropathy, explain its antioxidative/anti-inflammatory properties and provide a direction for future research.  相似文献   

18.
BackgroundThe epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells is the main pathological alteration in diabetic nephropathy (DN). Traditional Chinese medicine (TCM) has been used for the treatment of DN in clinical practice and has been proven to be effective.PurposeThis aim of this study was to shed light on the efficacy of Shenxiao decoction (SXD) on the EMT of renal tubular epithelial cells and the molecular mechanisms of SXD in mice with DN, as well as on the high glucose (HG)- and TGF-β1-induced EMT of NRK-52E and HK-2 cells.Study design and methodsA bioinformatics and network pharmacology method were utilized to construct the active ingredient-target networks of SXD that were responsible for the beneficial effects against DN. The effects of RUNX3 were validated in HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells.ResultsBioinformatics analysis revealed that 122 matching targets were closely associated with the regulation of cell migration and the AGE-RAGE signaling pathway in diabetic complications. The results also revealed that, relative to the mice with DN, the mice in the treatment group had an improved general state and reduced blood glucose levels. The degradation of renal function was ameliorated by SXD. Moreover, the protective effects of SXD were also observed on renal structural changes. Furthermore, SXD suppressed the activation of the transforming growth factor (TGF)-β1/Smad pathway and upregulated the RUNX3 and E-cadherin levels and downregulated the extracellular matrix (ECM) protein levels in mice with DN. SXD was further found to prevent the HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. Additionally, the overexpression of RUNX3 markedly inhibited the EMT and TGF-β1/Smad pathway induced by HG and TGF-β1 in NRK-52E and HK-2 cells.ConclusionTaken together, these results suggest that SXD maybe alleviate EMT in DN via the inhibition of the TGF-β1/Smad/RUNX3 signaling pathway under hyperglycemic conditions.  相似文献   

19.
Pyruvate is an endogenous antioxidant and anti-inflammatory substance. The present study was implemented to investigate the protective effect of ethyl pyruvate (EP) against the development and progression of diabetic nephropathy in an in vivo and in vitro model. Diabetic rats were prepared by injecting streptozotocin (65 mg/kg). Those that developed diabetes after 72 h were treated with EP (40 mg/kg) intraperitoneally. Diabetic rats without pyruvate treatment and nondiabetic rats were used for control. As an in vitro experiment, rat mesangial cells cultured primarily from Sprague-Dawley rats were treated in high-glucose (HG; 50 mM) or normal-glucose (NG; 5 mM) conditions and with or without pyruvate. Pyruvate-treated diabetic rats exhibited decreased albuminuria and attenuated NADPH-dependent reactive oxygen species generation. Immunohistochemistry showed reduced laminin, type IV collagen, and fibronectin deposition in the glomeruli compared with nontreated diabetic rats. Parallel changes were shown in tissue mRNA and protein expression levels of monocyte chemoattractant protein-1, transforming growth factor-β1, laminin, fibronectin, and type IV collagen in the kidney. Concordantly, protective effects were also exhibited in the mesangial cell culture system. These findings suggest that pyruvate protects against kidney injury via NADPH oxidase inhibition. The present study established that activation of NADPH oxidase plays a crucial role in diabetes-induced oxidative stress, glomerular hypertrophy, and ECM molecule expression. Pyruvate exhibited a renoprotective effect in the progression of experimental diabetic nephropathy. Future research is warranted to investigate the protective mechanism of pyruvate more specifically in relation to NADPH oxidase in diabetic nephropathy.  相似文献   

20.
Sohn EJ  Kim CS  Kim YS  Jung DH  Jang DS  Lee YM  Kim JS 《Life sciences》2007,80(5):468-475
We investigated the effect of magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl), a marker compound isolated from the cortex of Magnolia officinalis, in non-obese type 2 diabetic Goto-Kakizaki (GK) rats. The rats were treated orally with magnolol (100 mg/kg body weight) once a day for 13 weeks. In magnolol-treated GK rats, fasting blood glucose and plasma insulin were significantly decreased, and the pancreatic islets also showed strong insulin antigen positivity. Urinary protein and creatinine clearance (Ccr) were significantly decreased. Pathological examination revealed the prevention of the glomeruli enlargement in magnolol-treated GK rats. The overproduction of renal sorbitol, advanced glycation endproducts (AGEs), type IV collagen, and TGF-beta1 mRNA were significantly reduced in magnolol-treated GK rats. Thus based on our findings, the use of magnolol could result in good blood glucose control and prevent or retard development of diabetic complications such as diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号