首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic (As) exerts oxidative stress with depletion of body selenium in monogastric animals. But in ruminants this fact is not yet verified. Vitamin E is an effective dietary antioxidant. Thus, in this experiment, the protective effect of vitamin E against arsenic toxicity induced by sodium arsenite (60 mg As/kg diet) was investigated in goat kids. For this, 21 male kids were divided into three equal groups and fed either basal diet as such (control), or supplemented with 60 mg As/kg diet and 60 mg As/kg diet + 250 IU vitamin E/kg diet for 180 days. Vitamin E supplementation alleviated the toxic effects caused by arsenic on serum alanine aminotransferase and aspartate aminotransferase and lipid peroxidation. It also prevented the depletion of reduced glutathione content and reduction in activity of catalase, superoxide dismutase and glutathione-s-transferase in erythrocytes resulted from arsenic intoxication. The elevated levels of arsenic and reduced levels of selenium in the serum and tissues in arsenic treated animals were attenuated by vitamin E supplementation, though not completely. However, serum cortisol level was not affected by arsenic. It was concluded that arsenic exerts cortisol independent stressor mechanism and supplementation of vitamin E at a level of 250 IU/kg diet was partially effective in reducing tissue accumulation of arsenic in the body and protect the kids from oxidative stress induced by arsenic.  相似文献   

2.
The aims of this study were to clarify the effects of high dietary supplementation with boric acid and borax, called boron (B) compounds, on lipid peroxidation (LPO), antioxidant activity, some vitamin levels, and DNA damage in rats. Thirty Sprague Dawley male rats were divided into three equal groups: the animals in the first group (control) were fed with a standard rodent diet containing 6.4 mg B/kg, and the animals in the experimental group were fed with a standard rodent diet added with a supra-nutritional amount of boric acid and borax (100 mg B/kg) throughout the experimental period of 28 days. The B compounds decreased malondialdehyde (MDA), DNA damage, the protein carbonyl content (PCO) level in blood, and glutathione (GSH) concentration in the liver, Cu–Zn superoxide dismutase (SOD), and catalase (CAT) activity in the kidney. The B compounds increased GSH concentration in blood and the vitamin C level in plasma. Consequently, our results demonstrate that B supplementation (100 mg/kg) in diet decreases LPO, and enhances the antioxidant defense mechanism and vitamin status. There are no differences in oxidant/antioxidant balance and biochemical parameters except for serum vitamin A and liver GSH concentration, between the boron compounds used in this study.  相似文献   

3.
BackgroundPeripheral nerve injuries represent a clinical problem with insufficient or unsatisfactory treatment options. Functional outcome with nerve guidance conduits was unsatisfactory in nerve defects with increased gap size. So, cell therapy may benefit as a tool for optimizing the regeneration process. The aim of the present study was to evaluate the impact of combination of cell therapy and nerve guidance conduits on the nerve regeneration and on the expression of the factors aiding the regeneration in a rat model of sciatic nerve injury.Methods and resultsSixty Wistar rats were randomly divided into four groups: Group I: normal control group; Group II: sciatic nerve injury (SNI) with a 10 mm long sciatic nerve gap; Group III: SNI with using a nerve conduit (NC) for nerve gap bridging; and Group IV: SNI with using a NC associated with Wharton’s jelly derived mesenchymal stem cells (WJ-MSCs). The results showed that the combination therapy NC + WJ-MSCs caused much better beneficial effects than NC alone evidenced by increasing sciatic nerve index and pin-prick score. The histopathological analysis found that the use of the NC combined with WJ[HYPHEN]MSCs resulted in a structure of the sciatic nerve comparable to the normal one with better nerve regeneration when compared with NC only. There was no differentiation of WJ-MSCs into nerve structure. Lastly, there was an upregulation of expression for netrin-1, ninjurin, BDNF, GDNF, VEGF and angiopoitin-1 rat genes in NC + WJ-MSCs group than NC alone.ConclusionThe addition of WJ-MSCs to the nerve guidance conduits seems to bring significant advantage for nerve regeneration, basically by increasing the expression of neurotrophic and angiogenic factors establishing more favorable environment for nerve regeneration.  相似文献   

4.
The present study was conduced to investigate the synergistic effects of combined treatments with Se-methylselenocysteine (SeMSC) and vitamin E (Vit E) in reversing oxidative stress induced by ethanol in serum and different tissues of rats. Sixty female rats were randomly divided into six groups for 30 days’ consecutive pretreatments as followed: control (I), physiological saline (II), 2.8 μg kg−1 Se as SeMSC (III), 2.8 μg kg−1 Se as sodium selenite (Na2SeO3, IV), 5 mg kg−1 α-tocopherol as α-tocopherol acetate (Vit E, V), 5 mg kg−1 α-tocopherol as α-tocopherol acetate and 2.8 μg kg−1 Se as SeMSC (VI). All animals in groups II–VI were treated by ethanol treatment to cause oxidative stress. After 6 h of ethanol treatment, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), the contents of total antioxidant capacity (T-AOC), malondialdehyde (MDA), glutathione (GSH) and carbonyl protein (CP) in the serum, liver, heart and kidney were measured. The result showed that the individual SeSMC, Na2SeO3 and vitamin E could effectively increase the SOD, T-AOC, GSH-Px and GSH contents as well as significantly decrease the MDA and CP concentrations in the tissues of ethanol-induced rats. At the same dose on different forms of Se, SeMSC showed greater antioxidant activity than Na2SeO3. Moreover, group VI (SeMSC and α-tocopherol acetate) showed much better antioxidant activity than individual group III (SeMSC) and V (α-tocopherol acetate) due to the synergistic effect.  相似文献   

5.
Ashbya gossypii is a filamentous fungus which overproduces riboflavin as a pseudo-secondary metabolite. Vitamin E supplemented at 1, 2.5 and 5 μM levels in the growth medium of A. gossypii increased the extracellular secretion of riboflavin and at 50, 100 and 240 μM levels reduced the biomass and riboflavin yield. With 2.5 μM vitamin E total riboflavin production and extracellular riboflavin secretion on day 2 was higher than non-supplemented control. By day 3 the production in supplemented was nearly the same as in non-supplemented, but the intracellular riboflavin levels were lower and extracellular levels higher. Supplemented cells showed increased levels of catalase, glutathione peroxidase, lipid peroxides and membrane lipid peroxides, and decreased glutathione indicating that vitamin E, a well-known antioxidant, had acted as a pro-oxidant at low levels of 2.5 μM and had increased the oxidative stress. Menadione, a well known oxidant also increased riboflavin production and secretion at 1.0, 2.5 and 5.0 μM level. This is the first report were vitamin E and menadione effects support the concept that overproduction of riboflavin is a stress induced phenomenon. These findings are not only of scientific interest but also useful for improving the industrial production of riboflavin.  相似文献   

6.
The aim of this study was to investigate the protective effect of omega-3 fatty acid in HgCI2 toxicity in mice. Levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total sialic acid (TSA), and histopathological changes in selected organs were evaluated. Twenty-eight mice were equally divided into 4 groups, namely Groups I–IV. Group I animals received intraperitoneal (ip) injection of physiological saline solution; Group II animals received ip injection of 0.4 mg/kg/day HgCI2; Group III animals received ip injection of 0.4 mg/kg/day HgCI2 in addition to subcutaneous (sc) injection of 0.5 g/kg/day omega-3 fatty acid; and Group IV animals received sc injection of 0.5 g/kg/day omega-3 fatty acid. All treatments lasted 7 days. The levels of MDA, NO and TSA were significantly higher in Group II and lower in Groups III and IV as compared to the Group I. GSH level was the highest in Group IV. In histopathology, severe degeneration in liver and kidney was observed in Group II animals. These degrading changes were seen to be reduced greatly in Group III animals. The results suggested that omega-3 fatty acid might attenuate HgCI2-induced toxicity by improving antioxidant status and acute phase response in mice.  相似文献   

7.
We investigated the protective effects of magnolol, an active antioxidant and free radical scavenger extracted from Magnolia officinalis, in a hind limb ischemic-reperfusion animal model. Adult male Spraque-Dawley rats were subjected to hind limb ischemic insult for 2 hours and were intravenously treated with magnolol at 0.01 mg/kg (n=8), 0.3 mg/kg (n=8) mg/kg or 1 mg/kg (n=8) mg/kg, or vehicle (n=8). At 24 h post-insult, the levels of nitrite/nitrate (NOX), malondialdehyde (MDA) and myeloperoxidase (MPO), as well as the degree of muscle damage, were assessed. Relative to controls, animals treated with magnolol (0.3 and 1 mg/kg) had attenuated muscular inflammation, edema and damage. Magnolol (0.3–1 mg/kg) also effectively reduced postischemic rises in the MDA, NOx and MPO levels (p<0.05, respectively). Magnolol administrated at 0.01 mg/kg, however, failed to protect against the ischemic-perfusion limb injury. In addition, magnolol (0.01–1 mg/kg) did not affect local muscular blood reperfusion or other physiological parameters, including hematocrit, glucose, arterial blood gases and mean arterial blood pressure. Thus, intravenous administration with magnolol at 0.3–1 mg/kg protects against ischemic limb damage in rats. This cytoprotection may be attributed to its antioxidant, anti-nitrosative and anti-inflammatory actions.  相似文献   

8.
This work describes the gastroprotective actions of esculin (6,7-dihydroxycoumarin-6-o-glucoside) against indomethacin- or ethanol-induced lesions and verifies the role of nitric oxide, ATP-dependent K+ channels, prostaglandins, transient receptor potential vanilloid 1 and antioxidant effects in the gastroprotective mechanism of esculin in the ethanol-induced gastric lesion model. The intragastric administration of esculin at doses of 12.5, 25 and 50 mg/kg was able to protect the gastric mucosa against ethanol (0.2 mL/animal p.o.), and esculin at doses of 25 and 50 mg/kg protected against indomethacin-induced lesions (20 mg/kg p.o.). Administration of l-NAME (10 mg/kg i.p.), glibenclamide (10 mg/kg i.p.) or indomethacin (10 mg/kg p.o.), but not capsazepine (5 mg/kg p.o.), was able to reduce the gastroprotection promoted by esculin (25 mg/kg) on the ethanol-induced lesions. Measurements of nitrite, a NO metabolite, were increased in the group that was pretreated with esculin. In terms of antioxidant activity as a gastroprotective mechanism of esculin, the results show that pre-treatment with esculin decreased the amount of GSH, increased SOD activity, did not interfere with the CAT activity and decreased both the MPO activity and the MDA amount. In conclusion, pre-treatment with esculin confers significant gastroprotective and antioxidant activity and leads to a reduction in gastric injury; the mechanisms underlying these effects include stimulation of endogenous prostaglandins, nitric oxide synthesis, opening of KATP channels and reduction of free radicals or modulation of antioxidant enzyme systems.  相似文献   

9.
AimsThe study aims to investigate the effect to treat acute kidney injury (AKI) with bone marrow derived mesenchymal stem cells (BMSCs) combined with vitamin E and to develop a new treatment mode for AKI preclinical study.Main methodsBMSCs were separated from rat bone marrow. Gentamicin was used as a damage factor in the culture of renal tubular epithelial cells (RTECs) in vitro. After co-cultured with BMSCs and vitamin E, cell proliferation of each group was detected with CCK-8. In vivo, BMSCs (3.3 × 106 cells/kg) combined with vitamin E (80 mg/kg) were administered in AKI rats induced by gentamicin intravenously. The pathological changes, biochemical parameters and apoptosis genes after treatment were investigated furthermore.Key findingsIn co-cultured system, proliferating ability of RTECs was improved by BMSCs or vitamin E, especially for the combined group (P < 0.05). The treated rats in combined group presented the lowest serum creatinine and the highest urea nitrogen compared to non-treated rats. The improvement in renal pathological changes was followed by less necrosis, degeneration and expansion of renal tubule. Under transmission electron microscope, unclear cell structure and reduction of endoplasmic reticulum in the cytoplasm of RTECs were ameliorated with the treatment. Most apoptosis genes were up-regulated in model group while down-regulated with the therapy. Further analysis showed that the two treatments may act independently with each other.SignificanceOur data demonstrated that both BMSC and vitamin E hold therapeutic action to AKI induced by gentamicin. Especially, the combined treatment is better than BMSC or vitamin E alone.  相似文献   

10.
11.
Two experiments were conducted: Expt 1 determined the optimal allowance of vitamin E in the diet for broiler chicks aged 0–3 weeks; Expt 2 investigated the effects of different dietary levels of vitamin E (α-tocopherol) on the performance and the oxidative stability of thigh meat of broiler chicks during storage. In Expt 1, 1-day-old 900 broiler chicks were allocated to five treatments, each with six replicates (cages) of 22 as-hatched chicks for performance evaluation, and another cage of 45 male chicks for determining plasma and hepatic α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentration in blood and liver. The basal dietary α-tocopherol concentration was 13 mg/kg, and the five α-tocopherol acetate supplementation levels were 0, 5, 10, 50 and 100 mg/kg. For 0–3-week-old broiler chicks fed with maize–soya bean meal–soya oil type diet, supplementation of vitamin E did not influence the feed intake, but tended to improve growth and feed utilization, however there was no significant correlation between performance and vitamin E supplementation level. Significant positive correlations existed between dietary supplemental vitamin E level and plasma or hepatic α-tocopherol concentrations (P<0.05), and a negative correlation with hepatic TBARS levels no matter at what age (11, 16 and 21 days). In Expt 2, 2200 broiler chicks were randomly allocated to five treatments with four replicates (pens) in each. Chicks were fed ad libitum five pellet diets supplemented with vitamin E at 5, 10, 20, 50 and 100 mg/kg of diet, respectively. The basal dietary α-tocopherol level of grower and finisher diets were 7 and 6 mg/kg, respectively. Supplementation of vitamin E tended to improve growth and feed utilization of birds during 0–3 weeks of age, but the performance from 0 to 6 weeks of age were not influenced. The hepatic α-tocopherol concentrations of 6-week-old chicks linearly increased with the dietary vitamin E levels (R2=0.98, P<0.001). The content of TBARS in the thigh meat over 4 days of storage under 4°C was significantly decreased by increasing dietary vitamin E level (P<0.05). There was a significant inverse relationship between TBARS value in the thigh meat and the dietary vitamin E level (R2=0.93, P<0.01). Supplementation of vitamin E significantly improved the meat quality stability substantially against oxidative deterioration. Comparing the hepatic α-tocopherol levels of chicks in Expts 1 and 2, total allowance of dietary α-tocopherol of 20–30 mg/kg could sustain relatively constant hepatic α-tocopherol level at round about 2–2.5 μg/kg.  相似文献   

12.
Our study was designed to evaluate effects of an herbicide, pendimethalin on biochemical biomarkers and histopathological indices of the freshwater fish Channa punctata Bloch. Fish were acutely exposed (96 h) to sub-lethal concentrations (0.5 and 0.8 ppb of pendimethalin). Various oxidative stress indicators such as thiobarbituric acid reactive substances levels and protein carbonyl content, as well as antioxidant defenses parameters, such as glutathione-S-transferase (GST), catalase (CAT), reduced glutathione (GSH) and non-protein thiols (NP-SH) levels were studied, using the liver, kidney and gill tissues. Pendimethalin exposure increased lipid peroxidation and protein oxidation processes. There was significant inhibition in levels of GSH and NP-SH. The activity of antioxidant enzymes GST and CAT depleted in all the tissues in a dose dependent manner. The histopathological change in the gill showed necrosis and atrophy of primary and secondary gill lamellae. The tissue damages like degeneration of cytoplasm in hepatocytes, atrophy, formation of vacuoles, are some histopathological changes observed in the liver. The changes in histoarchitechture observed in the kidney included necrosis, cellular hypertrophy and granular cytoplasm. The present study demonstrates the disturbances in antioxidant armamentarium and importance of study in the potential risk assessment of herbicides on fish species.  相似文献   

13.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease characterized by progressive weakness and atrophy of specific skeletal muscles. As growing evidence suggests that oxidative stress may contribute to FSHD pathology, antioxidants that might modulate or delay oxidative insults could help in maintaining FSHD muscle function. Our primary objective was to test whether oral administration of vitamin C, vitamin E, zinc gluconate, and selenomethionine could improve the physical performance of patients with FSHD. Adult patients with FSHD (n=53) were enrolled at Montpellier University Hospital (France) in a randomized, double-blind, placebo-controlled pilot clinical trial. Patients were randomly assigned to receive 500 mg vitamin C, 400 mg vitamin E, 25 mg zinc gluconate and 200 μg selenomethionine (n=26), or matching placebo (n=27) once a day for 17 weeks. Primary outcomes were changes in the two-minute walking test (2-MWT), maximal voluntary contraction, and endurance limit time of the dominant and nondominant quadriceps (MVCQD, MVCQND, TlimQD, and TlimQND, respectively) after 17 weeks of treatment. Secondary outcomes were changes in the antioxidant status and oxidative stress markers. Although 2-MWT, MVCQ, and TlimQ were all significantly improved in the supplemented group at the end of the treatment compared to baseline, only MVCQ and TlimQ variations were significantly different between groups (MVCQD: P=0.011; MVCQND: P=0.004; TlimQD: P=0.028; TlimQND: P=0.011). Similarly, the vitamin C (P<0.001), vitamin E as α-tocopherol (P<0.001), vitamin C/vitamin E ratio (P=0.017), vitamin E γ/α ratio (P=0.022) and lipid peroxides (P<0.001) variations were significantly different between groups. In conclusion, vitamin E, vitamin C, zinc, and selenium supplementation has no significant effect on the 2-MWT, but improves MVCQ and TlimQ of both quadriceps by enhancing the antioxidant defenses and reducing oxidative stress. This trial was registered at clinicaltrials.gov (number: NCT01596803).  相似文献   

14.
It is well known that sympathetic nerve activity innervating brown adipose tissue (BAT sympathetic nerve activity) plays an important role in BAT thermogenesis. We have found that peripheral administration of arginine vasopressin (AVP) induced hypothermia by reduced thermogenesis in BAT. However, little is known about AVP-induced hypothermic response and its relationship with BAT sympathetic nerve activity. Because increases in baroreceptor inputs inhibit peripheral sympathetic nervous activity, we hypothesized that AVP-induced hypothermia is related to baroreceptor reflex suppression of BAT sympathetic nerve activity. To test this hypothesis, Male Sprague-Dawley rats were subjected to sinoaortic denervation or sham denervation, and implanted with radiotelemetry transmitters to assess the effects of peripheral administration of AVP on BAT sympathetic nerve activity, core and BAT temperatures. In sham-operated rats, an intraperitoneal (i.p.) injection of 10 µg/kg AVP led to a significant decrease in core and BAT temperatures. However, sinoaortic denervation significantly reduced the fall of core and BAT temperatures induced by AVP, compared with levels in sham-operated rats. AVP (10 µg/kg i.p.) rapidly decreased BAT sympathetic nerve activity in control and sham-operated rats, with the greatest levels of suppression occurring at 35 min and these lowest levels attained were with 30.6% and 29.24%, respectively. Furthermore, we found that sinoaortic denervation attenuated the suppressive effects of AVP (10 µg/kg i.p.) on BAT sympathetic nerve activity. The greatest level of suppression was only 20.8% occurring at 35 min after AVP. Therefore, these results indicate that the hypothermic effects of peripheral administration of AVP are partially mediated by the arterial baroreceptor reflex suppression of BAT sympathetic nerve activity and BAT thermogenesis.  相似文献   

15.
Recent research has begun to show the role of the activity of the vagus nerve in cancer prognosis. However, it remains unknown whether cancer severity can impair vagal nerve activity. This study combined data (N = 657) of five different cancers (colorectal, pancreas, prostate, lung and ovarian) concerning patients’ Heart Rate Variability (HRV), a vagal nerve activity index. These data were compared to HRV levels of a healthy sample in another study. In addition, we examined the moderating effects of age, gender and cancer stage on HRV. The mean HRV of the cancer patients sample was significantly lower (HRV = 22 ms) compared to the healthy sample (HRV = 50 ms) (p < 0.000001). While age and gender did not significantly affect HRV, cancer patients with advanced stages had significantly lower HRV than those with early stages (p = 0.011). A possible bi-directional relation between cancer and vagal nerve activity is discussed. These findings are of importance for prognostication since they provide researchers and clinicians with expected values of vagal nerve activity in cancer patients.  相似文献   

16.
《Reproductive biology》2014,14(3):182-189
The objective of the study was to investigate the protective effect of Apium graveolens (AP) against di-(2-ethylhexyl) phthalate (DEHP)-induced testes injury in rats. Adult rats were divided into nine groups: (1) control group (no treatment); (2) corn oil (60 μg/kg body weight – bwt); (3) AP (50 μg/kg bwt); (4) 300 mg DEHP/kg bwt; (5) 500 mg DEHP/kg bwt; (6) 1000 mg DEHP/kg bwt; (7) 300 mg DEHP/kg bwt + AP; (8) 500 mg DEHP/kg bwt + AP; and (9) 1000 mg DEHP/kg bwt + AP. Oral administration of treatments was performed daily for 6 weeks. DEHP decreased (p < 0.01) body weight, testis weight and serum concentrations of testosterone, cholesterol and total proteins. Moreover, DEHP increased (p < 0.001) total antioxidant capacity in the testis and plasma DEHP level. In addition, DEHP decreased mRNA expression of two testicular steroidogenic enzymes: 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. DEHP also caused atrophy, vacuolar degeneration and aspermia of the seminiferous tubules. AP administered concurrently with DEHP effectively alleviated most of the DEHP-induced effects. In conclusion, in male rats, DEHP had adverse effects on the testis including inhibition of androgen production. A concurrent administration of A. graveolens (celery oil) protected the testis against DEHP-induced toxicity.  相似文献   

17.
《Small Ruminant Research》2008,76(2-3):185-191
General health, clinical-chemical blood analysis and copper (Cu), zinc (Zn), selenium (Se) and vitamin E concentrations in plasma and liver tissue (wet weight, ww) of two extensive grazing sheep flocks without mineral supply were compared to the status of local roe deer (Capreolus capreolus) populations (liver samples). Both sheep flocks were classified as healthy except for a remarkable variation in body weight and a slight foot rot infection in one flock. Hematology of sheep was normal, and total protein and creatinine as well as activities of creatin kinase, aspartat-amino-transferase, alkaline phosphatase and gamma-glutamyl-transferase in plasma were within reference levels. The mean of glutamate dehydrogenase (13.8 U/l) was slightly elevated in one flock. Mean liver concentrations of Zn (38.9 and 43.5 mg/kg ww) and Cu (111 and 87.5 mg/kg ww) in sheep flocks were higher compared to the respective roe deer populations (27.5 and 36.3 mg Zn/kg ww; 18.3 and 28.6 mg Cu/kg ww). This is supposed to be caused by differences in Cu and Zn metabolism in sheep and roe deer. Selenium deficiency was diagnosed in liver samples of both sheep flocks (0.21 and 0.23 mg/kg ww). There were neither significant differences compared to roe deer (0.21 and 0.27 mg Se/kg ww) nor differences depending on location. Correlations between plasma and liver concentrations of Cu, Zn and Se were not significant in sheep. Means of vitamin E in liver samples (30.6 and 41.8 mg/kg ww) were higher in roe deer populations. This may be caused by the opportunity of selective browsing for wild ruminants, which allows access to younger plants which are higher in vitamin E.  相似文献   

18.
The experiment was conducted to study the effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. A total of 108 castrates (Duroc × Landrace × Yorkshire) at average body weight (BW) of 60 kg were allotted to three treatments, each of which was replicated three times with 12 pigs per replicate (four per pen). The control groups received the basal diet containing 0.045 mg Se/kg. A 0.3 mg Se/kg in forms of sodium selenite or selenomethionine was added to the basal diet for the experimental groups. The total test period was 40 d. Results showed that selenomethionine-treatment increased the Hunter a (redness) value of meat color during 45 min, 8 and 16 h measurement period (P<0.05) and decreased the drip loss of loin muscle during 8 and 16 h measurement period (P<0.05), while sodium selenite-treatment only elevated the Hunter a value of meat color during 0.75 h measurement period (P<0.05) and had no significant effects on drip loss of loin muscle tissues. Both selenomethionine and sodium selenite-treatment increased the Se content in serum, muscle, liver, pancreas and kidney tissue (P<0.05), the level was substantially higher in muscle, liver and pancreas (P<0.05) in the selenomethionine treated group. In addition, both selenomethionine and sodium selenite-treatment increased glutathione peroxidase (GSH-Px) activity (P<0.05) and decreased the malondialdehyde (MDA) content in the liver and muscle (P<0.05) when compared with control group, but the level of magnitude was higher when selenomethionine was fed. The present study suggests that compared with sodium selenite, selenomethionine is more effective in depositing Se in tissues, enhances the antioxidant status, thus decreasing the volume of drip loss and stabilizing the meat color.  相似文献   

19.
Indomethacin is used in the treatment of inflammatory diseases. But the drug toxicity limits its usage. This study investigated whether adaptation occurred after various dosages of repeated (chronic) indomethacin in rats to the gastro-toxic effects of indomethacin. It also examined whether the adaptation was related to oxidant–antioxidant mechanisms and oxidative DNA damage in gastric tissue. To illuminate the adaptation mechanism in the gastric tissue of rats given various dosages of chronic indomethacin, the levels of oxidants and antioxidants (GSH, MDA, NO, SOD and MPO), activities of COX-1 and COX-2 enzymes and oxidative DNA damage (8-OHd Gua/105 Gua) were measured. Results were compared to 25-mg/kg single-dose indomethacin group, and the role of oxidant and antioxidant parameters and oxidative DNA damage in the adaptation mechanism was evaluated. The average ulcer areas of gastric tissue of the 0.5-, 1-, 2-, 3-, 4-, and 5-mg/kg dosages of chronic indomethacin given to rats were 19.5 ± 3.7, 12.5 ± 3.3, 10 ± 5.2, 4.5 ± 3.6, 8.6 ± 2.4, and 9.5 ± 2.1 mm2, respectively. This rate was measured as 21.3 ± 2.6 mm2 in the single-dose indomethacin group. Consequently, after various dosages of repeated (chronic) indomethacin administration in rats, it was observed that a clear adaptation developed against gastric damage and that gastric damage was reduced. The best adaptation was observed in the gastric tissue of the 3-mg/kg chronic indomethacin group. In parallel with the damage reduction, the oxidant parameters (MDA and MPO) and oxidative DNA damage (8-OHd Gua/105 Gua) were reduced, and the antioxidant parameters (GSH, NO and SOD) were increased. There is no relation between COX enzymes and adaptation mechanism. This circumstance shows that not COX-1 and COX-2 enzymes, oxidant and antioxidant parameters may play a role in the adaptation mechanism.  相似文献   

20.
Although the endocrine disruptor bisphenol A (BPA) is reported to inhibit nerve conduction, the underlying mechanisms are unclear. Therefore, in the present study, we examined the effect of BPA on compound action potentials (CAPs) recorded from the frog sciatic nerve using the air-gap method. Treatment of the sciatic nerve with BPA (0.5 mM) for 20 min reduced the peak amplitude of the CAP by approximately 60% in a partially reversible manner. The reduction in the CAP peak amplitude was concentration-dependent, with a half-maximal inhibitory concentration (IC50) value of 0.31 mM. This effect of BPA was unaffected by an estrogen-receptor antagonist, 4-hydroxytamoxifen, which by itself reduced CAP peak amplitude, with an IC50 value of 0.26 mM (comparable to that of BPA). The natural estrogen 17β-estradiol, at the highest dissolvable concentration (0.05 mM), had an effect similar to that of BPA. The IC50 value of BPA was comparable to those of some local anesthetics in inhibiting frog CAPs. Our findings suggest that BPA inhibits nerve conduction in a manner independent of estrogen receptors. This action of BPA may underlie, at least in part, the neurotoxicity of the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号