首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The NF-κB pathway is a phylogenetically conserved signaling pathway with a central role in inflammatory and immune responses. Here we demonstrate that a cochaperone protein, Droj2/DNAJA3, is involved in the activation of canonical NF-κB signaling in flies and in human cultured cells. Overexpression of Droj2 induced the expression of an antimicrobial peptide in Drosophila. Conversely, Droj2 knockdown resulted in reduced expression of antimicrobial peptides and higher susceptibility to Gram-negative bacterial infection in flies. Similarly, Toll-like receptor-stimulated IκB phosphorylation and NF-κB activation were suppressed by DNAJA3 knockdown in HEK293 cells. IκB kinase overexpression-induced NF-κB phosphorylation was also compromised in DNAJA3 knockdown cells. Our study reveals a novel conserved regulator of the NF-κB pathway acting at the level of IκB phosphorylation.  相似文献   

6.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

7.
8.
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.  相似文献   

9.
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the “NEMO-binding domain” at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain–Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture–based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.  相似文献   

10.
Protein kinase A (PKA) activation by cAMP phosphorylates multiple target proteins in numerous platelet inhibitory pathways that have a very important role in maintaining circulating platelets in a resting state. Here we show that in thrombin- and collagen-stimulated platelets, PKA is activated by cAMP-independent mechanisms involving dissociation of the catalytic subunit of PKA (PKAc) from an NFκB-IκBα-PKAc complex. We demonstrate mRNA and protein expression for most of the NFκB family members in platelets. From resting platelets, PKAc was co-immunoprecipitated with IκBα, and conversely, IκBα was also co-immunoprecipitated with PKAc. This interaction was significantly reduced in thrombin- and collagen-stimulated platelets. Stimulation of platelets with thrombin- or collagen-activated IKK, at least partly by PI3 kinase-dependent pathways, leading to phosphorylation of IκBα, disruption of an IκBα-PKAc complex, and release of free, active PKAc, which phosphorylated VASP and other PKA substrates. IKK inhibitor inhibited thrombin-stimulated IkBα phosphorylation, PKA-IkBα dissociation, and VASP phosphorylation, and potentiated integrin αIIbβ3 activation and the early phase of platelet aggregation. We conclude that thrombin and collagen not only cause platelet activation but also appear to fine-tune this response by initiating downstream NFκB-dependent PKAc activation, as a novel feedback inhibitory signaling mechanism for preventing undesired platelet activation.  相似文献   

11.
12.
The scaffold protein CARD9 plays an essential role in anti-fungus immunity and is implicated in mediating Dectin-1/Syk-induced NF-κB activation in response to Candida albicans infection. However, the molecular mechanism by which CARD9 mediates C. albicans-induced NF-κB activation is not fully characterized. Here we demonstrate that CARD9 is involved in mediating NF-κB activation induced by the hyphal form of C. albicans hyphae (Hyphae) but not by its heat-inactivated unicellular form. Our data show that inhibiting Dectin-2 expression selectively blocked Hyphae-induced NF-κB, whereas inhibiting Dectin-1 mainly suppressed zymosan-induced NF-κB, indicating that Hyphae-induced NF-κB activation is mainly through Dectin-2 and not Dectin-1. Consistently, we find that the hyphae stimulation induces CARD9 association with Bcl10, an adaptor protein that functions downstream of CARD9 and is also involved in C. albicans-induced NF-κB activation. This association is dependent on Dectin-2 but not Dectin-1 following the hyphae stimulation. Finally, we find that although both CARD9 and Syk are required for Hyphae-induced NF-κB activation, they regulate different signaling events in which CARD9 mediates IκBα kinase ubiquitination, whereas Syk regulates IκBα kinase phosphorylation. Together, our data demonstrated that CARD9 is selectively involved in Dectin-2-induced NF-κB activation in response to C. albicans hyphae challenging.  相似文献   

13.
The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex.  相似文献   

14.
Cytoplasmic presence of Hsp60, which is principally a nuclear gene-encoded mitochondrial chaperonin, has frequently been stated, but its role in intracellular signaling is largely unknown. In this study, we demonstrate that the cytosolic Hsp60 promotes the TNF-α-mediated activation of the IKK/NF-κB survival pathway via direct interaction with IKKα/β in the cytoplasm. Selective loss or blockade of cytosolic Hsp60 by specific antisense oligonucleotide or neutralizing antibody diminished the IKK/NF-κB activation and the expression of NF-κB target genes, such as Bfl-1/A1 and MnSOD, which thus augmented intracellular ROS production and ASK1-dependent cell death, in response to TNF-α. Conversely, the ectopic expression of cytosol-targeted Hsp60 enhanced IKK/NF-κB activation. Mechanistically, the cytosolic Hsp60 enhanced IKK activation via upregulating the activation-dependent serine phosphorylation in a chaperone-independent manner. Furthermore, transgenic mouse study showed that the cytosolic Hsp60 suppressed hepatic cell death induced by diethylnitrosamine in vivo. The cytosolic Hsp60 is likely to be a regulatory component of IKK complex and it implicates the first mitochondrial factor that regulates cell survival via NF-κB pathway.  相似文献   

15.
16.
17.
We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM) complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium). It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.  相似文献   

18.
19.
Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase β mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号