首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigated the ability of zinc (Zn) and N-acetylcysteine (NAC) in preventing the biochemical alterations caused by mercury (Hg) and the retention of this metal in different organs. Adult female rats received ZnCl2 (27 mg/kg) and/or NAC (5 mg/kg) or saline (0.9%) subcutaneously and after 24 h they received HgCl2 (5 mg/kg) or saline (0.9%). Twenty-four hours after, they were sacrificed and analyses were performed. Hg inhibited hepatic, renal, and blood δ-aminolevulinic acid dehydratase (δ-ALA-D) activity, decreased renal total thiol levels, as well as increased serum creatinine and urea levels and aspartate aminotransferase activity. HgCl2-exposed groups presented an important retention of Hg in all the tissues analyzed. All pre-treatments demonstrated tendency in preventing hepatic δ-ALA-D inhibition, whereas only ZnCl2 showed this effect on blood enzyme. Moreover, the combination of these compounds completely prevented liver and blood Hg retention. The exposure to Zn and Hg increased hepatic metallothionein levels. These results show that Zn and NAC presented promising effects against the toxicity caused by HgCl2.  相似文献   

2.
This work investigated the preventive effect of diphenyl diselenide [(PhSe)2] on renal and hepatic toxicity biomarkers and oxidative parameters in adult mice exposed to mercury chloride (HgCl2). Selenium (Se) and mercury (Hg) determination was also carried out. Mice received a daily oral dose of (PhSe)2 (5.0 mg/kg/day) or canola oil for five consecutive days. During the following five days, the animals were treated with a daily subcutaneous dose of HgCl2 (5.0 mg/kg/day) or saline (0.9%). Twenty-four hours after the last HgCl2 administration, the animals were sacrificed and biological material was obtained. Concerning toxicity biomarkers, Hg exposure inhibited blood δ-aminolevulinic acid dehydratase (δ-ALA-D), serum alanine aminotransferase (ALT) activity and also increased serum creatinine levels. (PhSe)2 partially prevented blood δ-ALA-D inhibition and totally prevented the serum creatinine increase. Regarding the oxidative parameters, Hg decreased kidney TBARS levels and increased kidney non-protein thiol levels, while (PhSe)2 pre-treatment partially protected the kidney thiol levels increase. Animals exposed to HgCl2 presented Hg content accumulation in blood, kidney and liver. The (PhSe)2 pre-treatment increased Hg accumulation in kidney and decreased in blood. These results show that (PhSe)2 can be efficient in protecting against these toxic effects presented by this Hg exposure model.  相似文献   

3.
Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30 mg/kg), α-HgS (HgS, 30 mg/kg), HgCl2 (33.6 mg/kg), or MeHg (3.1 mg/kg) for 7 days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1–4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes.  相似文献   

4.
ProjectBoth septic shock and sodium selenite (Na2SeO3) lead to multiple organ failure through oxidation. Na2SeO3 has direct oxidant effects above the nutritional level and indirect anti-oxidant properties.In a lipopolysaccharide (LPS) rat model we assessed margin of safety, toxicity and beneficial effect of pentahydrate Na2SeO3 (5H2O·Na2SeO3) at oxidant doses.ProcedureIn a three-step study on 204 rats we: (i) observed toxic effects of Na2SeO3 injected intraperitoneously (IP) and determined its Minimum Dose Without Toxic effect (MDWT) 0.25–0.35 mg/kg selenium (Se) content; (ii) injected IP LPS at 70% lethal dose (LD) followed, or not, one hour later by IP Na2SeO3 at MDWT and (iii) by doses > MDWT. At 48 h, in survivors, we measured plasma creatinine, lactate, aspartate and alanine aminotransferase (AST, ALT), nitric oxide (NO) and Se concentrations.Results(i) Na2SeO3 alone did not increase NO and lactate. Encephalopathy appeared at 1 mg Se/kg. Creatinine increased at 1–1.75 mg Se/kg, AST, ALT at 3–4.5 mg Se/kg, and the minimum LD was 3 mg Se/kg. (ii) Mortality after LPS was 37/50 (74%, [62–86%]) vs. 20/30 (67%, [50–84%]) when followed by Na2SeO3 at MDWT (p = 0.483) with a decreased in NO (−31%, p = 0.038) a trend for lactate decrease (−19%, p = 0.068) and an increased Se in plasma of survivals. (iii) All rats died at doses ≥0.6 mg/kg (p < 0.001).ConclusionMechanisms of LPS and Na2SeO3 toxicity differ (i.e. NO, lactate). In septic shock 5H2O·Na2SeO3 toxicity increased, margin of safety decrease, but IP administration of dose considered as oxidant of 5H2O·Na2SeO3 showed beneficial effects.  相似文献   

5.
Acute effects of mercury on mouse blood, kidneys, and liver were evaluated. Mice received a single dose of mercuric chloride (HgCl2, 4.6 mg/kg, subcutaneously) for three consecutive days. We investigated the possible beneficial effects of antioxidant therapy (N-acetylcysteine (NAC) and diphenyl diselenide (PhSe)2) compared with the sodium salt of 2,3-dimercapto-1-propanesulfonic acid (DMPS), an effective chelating agent in HgCl2 exposure in mice. We also verified whether metallothionein (MT) induction might be involved in a possible mechanism of protection against HgCl2 poisoning and whether different treatments would modify MT levels and other toxicological parameters. The results demonstrated that HgCl2 exposure significantly inhibited δ-aminolevulinate dehydratase (δ-ALA-D) activity in liver and only DMPS treatment prevented the inhibitory effect. Mercuric chloride caused an increase in renal non-protein thiol groups (NPSH) and none of the treatments modified renal NPSH levels. Urea concentration was increased after HgCl2 exposure. NAC plus (PhSe)2 was partially effective in protecting against the effects of mercury. DMPS and (PhSe)2 were effective in restoring the increment in urea concentration caused by mercury. Thiobarbituric acid-reactive substances (TBARS), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and ascorbic acid levels were not modified after mercury exposure. Mercuric chloride poisoning caused an increase in hepatic and renal MT levels and antioxidant treatments did not modify this parameter. Our data indicated a lack of therapeutic effect of the antioxidants tested.  相似文献   

6.
ProjectBeside its useful functions at very low concentrations, selenium including supplementary Se sources pose a potential toxicological risk. The toxicity of selenium species was tested in HaCaT cell culture and related nephrotoxicity in mice.ProcedureThe apoptotic shrinkage and necrotic expansion of cells were measured by time-lapse image microscopy. Acute nephrotoxicity was estimated upon administration of various selenium species to mice for two weeks. To confirm or to refute the accumulation of Se in the kidney and its potential chronic effect, Se concentration in kidney tissue and histopathlology were tested.ResultsThe comparison of selenium species showed that organic lactomicroSe did not affect cell growth at 5 ppm, but inorganic nanoSe severely hampered it at lower concentration (1 ppm). The in vivo Se treatment (0.5, 5, 50 ppm, corresponding to 4, 40 and 400 μg/kg) was misleading as it did neither affect the outward appearance nor the weight of the kidney. Se accumulation was observed after selenate, selenite, SelPlex, selenite and nanoSe administration, while lactomicroSe caused no traceable accumulation. In vivo, ex vivo and in vitro experiments reflected this order of selenium toxicity: selenate > selenite > SelPlex = nanoSe > lactomicroSe.ConclusionWithin the tested species lactomicroSe was the only non-nephrotoxic selenium source recommended for nutritional Se supplementation.  相似文献   

7.
The present study was designed to evaluate antioxidant and cytotoxic effect of selenium nanoparticles (Se NPs) biosynthesized by a newly isolated marine bacterial strain Bacillus sp. MSh-1. An organic–aqueous partitioning system was applied for purification of the biogenic Se NPs and the purified Se NPs were then investigated for antioxidant activity using DPPH scavenging activity and reducing power assay. Cytotoxic effect of the biogenic Se NPs and selenium dioxide (SeO2) on MCF-7 cell line was assesed by MTT assay. Tranmission electron micrograph (TEM) of the purified Se NPs showed individual and spherical nanostructure in size range of about 80–220 nm. The obtained results showed that, at the same concentration of 200 μg/mL, Se NPs and SeO2 represented scavenging activity of 23.1 ± 3.4% and 13.2 ± 3.1%, respectively. However, the data obtained from reducing power assay revealed higher electron-donating activity of SeO2 compared to Se NPs. Higher IC50 of the Se NPs (41.5 ± 0.9 μg/mL) compared to SeO2 (6.7 ± 0.8 μg/mL) confirmed lower cytotoxicity of the biogenic Se NPs on MCF-7 cell line.  相似文献   

8.
This study aimed to determine the effects of dietary pyridoxine and selenium (Se) on embryo development, reproductive performance and redox system in gilts. Eighty-four gilts were fed one of five diets: CONT) basal diet; MSeB60) CONT + 0.3 mg/kg of Na-selenite; MSeB610) diet 2 + 10 mg/kg of HCl-pyridoxine; OSeB60) CONT + 0.3 mg/kg of Se-enriched yeast; and OSeB610) diet 4 + 10 mg/kg of HCl-pyridoxine. Blood samples were collected for long-term (each estrus and slaughter) and peri-estrus (fourth estrus d −4 to d +3) profiles. At slaughter (gestation d 30), organs and embryos were collected. For long-term and peri-estrus profiles, Se level and source affected (P < 0.01) blood Se concentration whereas B6 level increased (P < 0.01) erythrocyte pyridoxal-5-phosphate concentration. A B6 level (P < 0.05) effect was observed on long-term plasma Se-dependent glutathione peroxidase (Se-GPX) activity whereas peri-estrus Se-GPX was minimum on d −1 (P < 0.01). Selenium level increased sows’ organs and embryo Se concentration (P < 0.01). Selenium source tended to enhance embryo Se content (P = 0.06). Within-litter embryo Se content was increased by B6 level (P < 0.01). Selenium level tended to affect Se-GPX and total GPX activities in organs mitochondria (P = 0.09 and 0.07, respectively). Selenium source affected kidney ATP synthesis (P = 0.05). In conclusion, B6 level affected the Se-GPX activity on a long-term basis, whereas the basal level of Se was adequate during the peri-estrus period. Embryo quality was not improved by dietary Se, and B6 impaired within-litter homogeneity.  相似文献   

9.
This work investigated zinc (Zn) and mercury (Hg) effects on oxidative parameters, markers of toxicity and metal levels in different tissues from non-lactating rats (NLR) and lactating rats (LR). Adult NLR and LR received ZnCl2 (27 mg/kg) or saline (0.9%) subcutaneously and after 24 h they received HgCl2 (5 mg/kg) or saline (0.9%). Twenty four hours later, they were sacrificed and the preparation of biological material and biochemical analyses were performed. With respect to oxidative parameters, Hg exposure decreased kidney total SH levels from NLR and LR and hepatic catalase activity (not statistically significant) in NLR. Zinc pre-treatment partly prevented the decrease of kidney total SH levels in LR. Zinc per se increased hepatic non-protein SH levels of NLR and LR. Regarding toxicity markers, Hg exposure inhibited the δ-aminolevulinic acid dehydratase (δ-ALA-D) activity from kidney and liver of NLR, inhibited serum alanine aminotransferase (ALT) activity of LR and increased serum creatinine and urea levels of NLR and LR. Zinc pre-exposure prevented the enzymatic alterations caused by Hg. NLR and LR Hg exposed presented accumulation of mercury in the kidney, liver, blood and urine. Zinc pre-treatment prevented this accumulation partly in NLR liver and blood and completely in LR kidney and liver. These results show that NLR and LR are differently sensitive to HgCl2 and that ZnCl2 showed a promising effect against Hg toxicity.  相似文献   

10.
This study aimed to assess the interaction between vitamin B6 and selenium (Se) for the flow of Se towards the Se-dependent glutathione peroxidase (GPX) system in response to oxidative stress naturally induced by oestrus in a pubertal pig model. At first oestrus, forty-five gilts were randomly assigned to the experimental diets (n = 9/group): basal diet (CONT); CONT + 0.3 mg/kg of Na-selenite (MSeB60); MSeB60 + 10 mg/kg of HCl-B6 (MSeB610); CONT + 0.3 mg/kg of Se-enriched yeast (OSeB60); and OSeB60 + 10 mg/kg of HCl-B6 (OSeB610). Blood samples were collected at each oestrus (long-term profiles), and daily from day −4 to +3 (slaughter) of the fourth oestrus (peri-oestrus profiles) after which liver, kidneys, and ovaries were collected. For long-term profiles, CONT had lower blood Se than Se-supplemented gilts (p < 0.01) and OSe was higher than MSe (p < 0.01). Lower erythrocyte pyridoxal-5-phosphate was found in B60 than B610 (p < 0.01). No treatment effect was observed on GPX activity. For peri-oestrus profiles, treatment effects were similar to long-term profiles. Treatment effects on liver Se were similar to those for long-term blood Se profiles and OSe had higher renal Se concentrations than MSe gilts (p < 0.01). Gene expressions of GPX1, GPX3, GPX4, and selenocysteine lyase in liver and kidney were greatest in OSeB610 gilts (p < 0.05). These results suggest that dietary B6 modulate the metabolic pathway of OSe towards the GPX system during the peri-oestrus period in pubertal pigs.  相似文献   

11.
An-Gong-Niu-Huang Wan (AGNH) is a famous traditional Chinese medicine used for brain trauma, hemorrhage, and coma. AGNH contains 10% realgar (As4S4) and 10% cinnabar (HgS). Both As and Hg are well-known for their toxic effects, and the safety of AGNH is of concern. To address this question, the acute toxicity of AGNH, realgar and cinnabar were compared to sodium arsenite (NaAsO2) and mercuric chloride (HgCl2). Mice were administrated orally AGNH at 1, 3 and 6 g/kg. AGNH at 3 g/kg contains 2.8 mmol As/kg as realgar and 1.18 mmol Hg/kg as cinnabar. Realgar, cinnabar, arsenite (0.28 mmol/kg, 10% of realgar) and HgCl2 (0.256 mmol/kg, 20% of cinnabar) were orally given to mice for comparison. Blood and tissues were collected 8 h later for toxicity evaluation. Serum alanine aminotransferase was increased by arsenite and blood urea nitrogen was increased by HgCl2. Total As accumulation after arsenite in liver (100-fold) and kidney (13-fold) was much higher than that after realgar. The accumulation of Hg after HgCl2 in liver was 400-fold higher and kidney 30-fold higher than after cinnabar. Histopathology showed moderate liver and kidney injuries after arsenite and HgCl2, but injuries were mild or absent after AGNH, realgar, and cinnabar. The expression of metallothionein-1, a biomarker of metal exposure, was increased 4–10-fold by arsenite and HgCl2, but was unchanged by AGNH, realgar and cinnabar. Thus, AGNH, realgar and cinnabar are much less toxic acutely than arsenite and HgCl2. The chemical forms of As and Hg are extremely important factors in determining their disposition and toxicity.  相似文献   

12.
The study investigated the effects of selenium (Se) supplementation on Se status in farmed fallow deer. Fallow deer were housed on grass pasture and adapted to consume ∼200 g of pelleted grain daily. Animals were divided into two groups. One group received pelleted grain enriched with sodium selenate for 12 weeks (Se+ group, N = 10). Se intake for the first 7 weeks was 0.18 mg/kg dry matter (DM) and 0.32 mg/kg DM for the subsequent 5 weeks. The control group was fed pelleted grain without extra Se (Se− group, N = 9, 0.06-0.08 mg/kg DM). Blood samples were collected at the beginning and the end of the experiment. After the animals were slaughtered, tissue samples were collected for analysis of Se concentrations and Se-dependent glutathione peroxidase 1 (GPx1) activity. In addition, Se-independent α-glutathione-S-transferase (α-GST) activity was analyzed in liver tissue. Se supplementation significantly increased Se levels in plasma and in tissues as follows: liver > spleen > skeletal muscle > myocardium > kidney. Se supplementation also significantly increased GPx1 activity in tissues in the following order: liver > skeletal muscle > spleen = myocardium > kidneys. However, hepatic α-GST activity did not differ between Se+ and Se− groups. As expected, Se supplementation increased blood and tissue Se concentrations and GPx1 activity, which suggests a better antioxidant status. However, the activity of α-GST, an important Se-independent antioxidant enzyme, was not altered, presumably because GPx provided an adequate antioxidant capacity even though Se intake was low.  相似文献   

13.
The genotoxic potential of anti-inflammatory/anti-arthritic and anticancer plant based drug molecule Boswelic acids (BA) was studied by in vivo system. Systematic literature survey revealed that studies on the genotoxicity of BA are not available. Although reports on genotoxicity of Boswellia serrata dry extract and modified 3-O-acetyl-11-keto-β-boswelic acid are available and these studies were conducted in in vitro systems. The earlier general toxicity study of BA has been conducted by us, revealed it to be non toxic. The genotoxicity was carried out in Wistar rats using different cytogenetic assay system-abnormalities viz. chromosomal aberrations; sperm morphology, micronuclei and comet assays. Six groups of animals, each comprised of five rats, were taken for each study. Group1-4 received BA at 125, 250, 500 and 1000 mg/kg p.o., respectively prepared as 2% gum acacia suspension, fifth group received a positive control cyclophosphamide (CP) 40 mg/kg p.o. or metronedazole (MTZ) 130 mg/kg p.o. or mercuric chloride (HgCl2) 0.864 mg/kg p.o. (as per the experiment requirement) whereas the sixth group kept as vehicle control. The results on the bases of the data obtained revealed that BA is quite safe as it did not show any genotoxicity at any dose level up to 1000 mg/kg. The positive controls used in different experiments showed highly significant abnormal cytogenetic changes in comparison to the control group.  相似文献   

14.
Dietary nutrient requirements for older animals have been studied far less than have requirements for young growing animals. To determine dietary selenium (Se) requirements in old rats, we fed female weanling rats a Se-deficient diet (0.007 μg Se/g) or supplemented rats with graded levels of dietary Se (0–0.3 μg Se/g) as Na2SeO3 for 52 weeks. At no point did Se deficiency or level of Se supplementation have a significant effect (P>0.05) on growth. To determine Se requirements, Se response curves were determined for 7 Se-dependent parameters. We found that minimum dietary Se requirements in year-old female rats were at or below 0.05 μg Se/g diet based on liver Se, red blood cell glutathione peroxidase (Gpx1) activity, plasma Gpx3 activity, liver and kidney Gpx1 activity, and liver and kidney Gpx4 activity. In conclusion, this study found that dietary Se requirements in old female rats were decreased at least 50% relative to requirements found in young, rapidly growing female rats. Collectively, this indicates that the homeostatic mechanisms related to retention and maintenance of Se status are still fully functional in old female rats.  相似文献   

15.
The present study was undertaken to establish mode of action, comparative therapeutic efficacy and safety evaluation of dithiothreitol (DTT) supplemented with Zn and Se against dimethylmercury in rats. Adult male albino rats of Sprague-Dawley strain (150 ± 10 g, n = 6 per group) were exposed a bolus dose of dimethylmercury (10 mg/kg, p.o.) for once only followed by DTT (15.4 mg/kg, i.p.) along with the combination of antioxidants Zn and Se (2 mmol/kg and 0.5 mg/kg, p.o.) after 72 h of toxicant administration for three days. The results showed a significant (P  0.05) increase in the activities of AST, ALT, alkaline phosphatase, lactate dehydrogenase, in serum after toxicant administration. This was accompanied by histopathological observations. A significant rise was observed in lipid peroxidation level and mercury ion concentration however reduced glutathione content decreased in liver, kidney and brain. A significant (P  0.05) decrease in the activity of acetyl cholinesterase was also seen in different regions of brain. Combined treatment of DTT along with Zn and Se significantly (P  0.05) recouped the alterations in the enzymatic activities of serum and reversed the tissue biochemical and histopathological changes of liver, kidney and brain. Our results demonstrate that combined treatment of thiol chelator (DTT) along with antioxidants (Zn and Se) plays an important role against dimethylmercury induced tissue damage and hepatic, nephro and neurotoxicity.  相似文献   

16.
《Phytomedicine》2010,17(12):1112-1118
The genotoxic potential of anti-inflammatory/anti-arthritic and anticancer plant based drug molecule Boswelic acids (BA) was studied by in vivo system. Systematic literature survey revealed that studies on the genotoxicity of BA are not available. Although reports on genotoxicity of Boswellia serrata dry extract and modified 3-O-acetyl-11-keto-β-boswelic acid are available and these studies were conducted in in vitro systems. The earlier general toxicity study of BA has been conducted by us, revealed it to be non toxic. The genotoxicity was carried out in Wistar rats using different cytogenetic assay system-abnormalities viz. chromosomal aberrations; sperm morphology, micronuclei and comet assays. Six groups of animals, each comprised of five rats, were taken for each study. Group1-4 received BA at 125, 250, 500 and 1000 mg/kg p.o., respectively prepared as 2% gum acacia suspension, fifth group received a positive control cyclophosphamide (CP) 40 mg/kg p.o. or metronedazole (MTZ) 130 mg/kg p.o. or mercuric chloride (HgCl2) 0.864 mg/kg p.o. (as per the experiment requirement) whereas the sixth group kept as vehicle control. The results on the bases of the data obtained revealed that BA is quite safe as it did not show any genotoxicity at any dose level up to 1000 mg/kg. The positive controls used in different experiments showed highly significant abnormal cytogenetic changes in comparison to the control group.  相似文献   

17.
Project: This study investigated the in vitro and in vivo effectiveness of biogenic selenium nanoparticles (Se NPs), biosynthesized by Bacillus sp. MSh-1, against Leishmania major (MRHO/IR/75/ER). Procedure: The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity effects of the biogenic Se NPs against both promastigote and amastigote forms of L. major. In a separate in vivo experiment, we also determined the preventive and therapeutic effects of biogenic Se NPs in BALB/c mice following subcutaneous infected with L. major. Results: The MTT assays showed that the highest toxicity occurred after 72 h against both promastigote and amastigote forms of L. major. The cytotoxicity of Se NPs was higher at all incubation times (24, 48, and 72 h) against the promastigote than the amastigote form (p < 0.05). The 50% inhibitory concentrations (IC50) of the Se NPs were 1.62 ± 0.6 and 4.4 ± 0.6 μg ml?1 against the promastigote and amastigote forms, respectively, after a 72-h incubation period. Apoptosis assays showed DNA fragmentation in promastigotes treated with Se NPs. In an animal challenge, prophylactic doses of biogenic Se NPs delayed the development of localized cutaneous lesions. Moreover, daily administration of Se NPs (5 or 10 mg kg?1 day?1) in similarly infected BALB/c mice that had not received prophylactic doses of Se NPs also abolished the localized lesions after 14 days. Conclusion: Based on these in vitro and in vivo studies, biogenic Se NPs can be considered as a novel therapeutic agent for treatment of the localized lesions typical of cutaneous leishmaniasis.  相似文献   

18.
19.
《Small Ruminant Research》2008,74(1-3):174-180
In this study, biological samples (slaughterhouse material) were collected from 30 sheep and 36 goats and classified according to gestational stage into either early or late gestation. Samples consisted of allantoic fluid, amniotic fluid, fetal liver, fetal kidney, fetal thyroid gland, maternal plasma and liver to determine selenium (Se) concentrations throughout gestation. The Se concentrations in the allantoic fluid, fetal liver and kidney increased significantly (p < 0.01) during late gestation. Concurrently, the Se concentrations in amniotic fluid, maternal plasma and liver decreased significantly (p < 0.01) over time. Significant (p < 0.01) positive relationships were recorded between the age of the fetus and Se concentrations in the allantoic fluid (r = 0.57–0.75), fetal liver (r = 0.43–0.59) and kidney (r = 0.80–0.81) in both sheep and goats. A significant (p < 0.05) positive relationships were also recorded between the Se concentrations in the allantoic fluid and fetal liver (r = 0.35–0.37), the maternal plasma and liver Se concentrations (r = 0.37–0.57) between sheep and goats. A significant (p < 0.05) negative correlation was recorded between the Se concentrations in the allantoic fluid with maternal plasma of sheep (r = −0.41) as well as between the fetal liver and maternal liver Se (r = −0.22 to 0.50) and a negative correlation (r = −0.42 to 0.43) (p < 0.01) between Se concentrations in the fetal liver and amniotic fluid in both sheep and goats, respectively. Se concentration in the fetal liver was significantly (p < 0.01) higher than that of the kidney and thyroid. In the thyroid gland no morphological differences were noted. Strong fetal–maternal relationships in Se concentration were evident throughout the gestational period and dams seem to sacrifice Se levels in order to maintain that in the fetus. Se concentrations in the amniotic and allantoic fluids could be used as a possible indicator of the Se status of the fetus throughout gestation.  相似文献   

20.
ObjectiveTo determine serum and urinary selenium (Se) levels in children with and without obesity, and to assess if Se influences the risk of obesity.Subjects and methodsHigh-resolution-continuum source-atomic absorption spectrometry (HR-CS-AAS) was used to determine the content of Se in 80 children (age 6–17; 40 boys, 40 girls). Correlations between variables were tested with the use of Spearman's correlation coefficient. U Mann–Whitney test was applied to assess the difference of Se contents in samples. Measured metabolic risk factors (blood pressure, glucose level, triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and total cholesterol), age, gender, and BMI were correlated. Logistic regression models were fitted to identify predictors of obesity interacting with selenium content in serum and urine, separately.ResultsObese children, regardless of gender, had lower Se content. Se level in serum (p = 0.001, OR 0.74, 95%CI 0.62–0.88) and total cholesterol (p = 0.001, OR 1.19, 95%CI 1.08–1.31) were the independent factors significantly influencing the risk of obesity in children. Two separate models were observed for Se in urine: (i) Se level (p < 0. 0001, OR 0.70, 95%CI 0.58–0.84) and glucose level (p < 0.0001, OR 1.22, 95%CI 1.10–1.35), and (ii) Se level (p = 0.002, OR 0.60 95%CI 0.43–0.83) and total cholesterol level (p = 0.003, OR 1.16, 95%CI 1.05–1.28).ConclusionThe current study suggests a possible role of Se in obesity. Further research needs to be performed to check if obese children are an at-risk group for Se deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号