首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要 目的:探讨Smac基因调控Caspase-3表达对紫杉醇耐药肺腺癌细胞株生物活性及经典凋亡信号通路的作用机制。方法:取构建好的耐药A549细胞,将其分为A549细胞(LC)组、A549细胞+Smac-NC(SN)组、A549细胞+Smac抑制剂(SI)组、A549细胞+Smac激动剂(SM)组、A549细胞+Caspase-3-NC(CN)组、A549细胞+Caspase-3抑制剂(CI)组、A549细胞+Caspase-3激动剂(CM)组、A549细胞+Smac激动剂+Caspase-3激动剂(MM)组;Real-time PCR法检测正常肺上皮细胞及4种肺腺癌细胞系中Smac、Caspase-3表达水平,将阴性对照、Smac、Caspase-3类似物转染至紫杉醇耐药肺腺癌细胞株,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,免疫印迹法检测经典凋亡信号通路表达,并分析Smac与Caspase-3的相关性。结果:肺腺癌细胞系中的Smac、Caspase-3 mRNA表达量显著低于正常肺上皮细胞系BEAS-2B(P<0.05),其中A549的Smac、Caspase-3 mRNA值最小(P<0.05),因此选取其作为此次实验细胞;LC组与SN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与SN组相比,SI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与SI组相比,SM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);LC组与CN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CN组相比,CI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与CI组相比,CM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);SM组与CM组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CM组相比,MM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);Smac与Caspase-3呈现正相关(r=0.470,P=0.002),组间具有显著差异。结论:Smac基因可显著改善紫杉醇耐药肺腺癌细胞株细胞生物活性,并激活经典凋亡信号通路,其作用机制可能与调控Caspase-3表达有关。  相似文献   

2.
The leaves of the Japanese Alnus sieboldiana have been extracted with n-hexane and then with methanol. A bioactivity-guided approach based on MTT assay for growth inhibition and quantitative real-time PCR for TNF-α inhibitory activity was taken to identify the active compounds in EtOAc soluble fraction of the methanol extract. From this active fraction, seven compounds have been isolated and four compounds (pinosylvin, galangin, quercetin and methyl gallate) have been examined for their dose-response effect on the viability of A549 cells and on TNF-α inhibitory activity. Based on MTT assay, all of the four examined compounds inhibit growth of human lung cancer cells. Among four tested compounds only galangin (3,5,7-trihydroxyflavone) significantly inhibited TNF-α gene expression in A549 cells (IC50 = 94 μM). Taken together, this finding suggests that galangin may be useful in cancer prevention.  相似文献   

3.
A series of novel 3-aryl-1-(4-tert-butylbenzyl)-1H-pyrazole-5-carbohydrazide hydrazone derivatives were synthesized and the effects of all the compounds on A549 cell growth were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound (E)-1-(4-tert-butylbenzyl)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-3-(4-chlorophenyl)-1H-pyrazole-5-carbohydrazide (3e) possessed the highest growth inhibitory effect and induced apoptosis of A549 lung cancer cells.  相似文献   

4.
目的:探讨核蛋白1(Nupr1)调控非小细胞肺癌细胞迁移、凋亡机制的研究。方法:肿瘤抑制剂盐酸素(salinomycin)不同时间处理非小细胞肺癌细胞A549后采用Western Blot法检测非小细胞肺癌细胞A549中Cleaved Caspase-3、Nupr1的蛋白表达;Transwell小室检测Nupr1基因沉默后非小细胞肺癌细胞A549细胞体外迁移、侵袭能力的变化;Western Blot法检测Nupr1沉默后非小细胞肺癌细胞A549 MMP-2、TIMP-1的蛋白表达;流式细胞仪检测Nupr1沉默后非小细胞肺癌细胞A549的凋亡情况。结果:与未经肿瘤抑制剂salinomycin处理对照组相比较,salinomycin处理后的非小细胞肺癌细胞A549中Nupr1蛋白表达量下降,Cleaved Caspase-3蛋白表达量升高,并且随着作用时间呈依赖关系。Nupr1-siRNA转染组的迁移能力相比对照组未转染组下降(64.4±7.2)%,Nupr1-siRNA转染组的侵袭能力相比对照组下降(58.7±7.3)%。与未转染Nupr1-siRNA对照组相比较,转染后TIMP-1的表达明显上调,而MMP-2的表达则明显下调。流式细胞仪检测结果显示Nupr1沉默后非小细胞肺癌细胞A549出现大量凋亡。结论:Nupr1基因沉默后通过上调TIMP-1的表达,下调MMP-2的表达降低肺癌A549细胞的侵袭和迁移能力,进而促进非小细胞肺癌细胞凋亡。  相似文献   

5.
目的探讨新型鬼臼毒素衍生物10Ⅲg诱导人肺腺癌细胞A549细胞凋亡及其调控机制。方法采用四甲基偶氮唑蓝(MTr)比色法、流式细胞术测定细胞周期细胞凋亡率,DNA琼脂糖凝胶电泳和微管蛋白组化染色,Western印迹法检测凋亡蛋白Bax、Caspase-3的表达。结果新型鬼臼毒素衍生物10m。对A549细胞增殖具有明显的剂量和时间依赖性抑制作用,细胞周期分析显示S期细胞数明显增多,出现G2/M期阻滞;10Ⅲg作用48h后DNA电泳可见明显的梯状条带;10Ⅲg能破坏A549细胞的细胞骨架,与依托泊苷相比有明显促进微管解聚现象;10Ⅲg浓度为10^-6mol/L时能显著促进Bax、Caspase-3蛋白的表达。结论新型鬼臼毒素衍生物10Ⅲg通过诱导A549细胞发生G2/M期阻滞而抑制其增殖,其机制可能与抑制细胞微管解聚及诱导细胞凋亡有关。  相似文献   

6.
A series of novel 3-aryl-1-arylmethyl-1H-pyrazole-5-carbohydrazide N-β-glycoside derivatives was synthesized by the reaction of substituted 1H-pyrazole-5-carbohydrazide with d-sugar and the effects of all the compounds on A549 cell growth were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound 3d possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.  相似文献   

7.
The excessive and inappropriate production of reactive oxygen species (ROS) can cause oxidative stress and is implicated in the pathogenesis of lung cancer. Cyclophilin A (CypA), a member of the immunophilin family, is secreted in response to ROS. To determine the role of CypA in oxidative stress injury, we investigated the role that CypA plays in human lung carcinoma (A549) cells. Here, we showed the protective effect of human recombinant CypA (hCypA) on hydrogen peroxide (H2O2)-induced oxidative damage in A549 cells, which play crucial roles in lung cancer. Our results demonstrated that hCypA substantially promoted cell viability, superoxide dismutase (SOD), glutathione (GSH), and GSH peroxidase (GSH-Px) activities, and attenuated ROS and malondialdehyde (MDA) production in H2O2-induced A549 cells. Compared with H2O2-induced A549 cells, Caspase-3 activity in hCypA-treated cells was significantly reduced. Using Western blotting, we showed that hCypA facilitated Bcl-2 expression and inhibited Bax, Caspase-3, Caspase-7, and PARP-1 expression. Furthermore, hCypA activates the PI3K/Akt/mTOR pathway in A549 cells in response to H2O2 stimulation. Additionally, peptidyl-prolyl isomerase activity was required for PI3K/Akt activation by CypA. The present study showed that CypA protected A549 cells from H2O2-induced oxidative injury and apoptosis by activating the PI3K/Akt/mTOR pathway. Thus, CypA might be a potential target for lung cancer therapy.  相似文献   

8.
In order to assess the effect of p73 gene polymorphism G4C14‐A4T14 on cisplatin‐based chemosensitivity of human lung adenocarcinoma cell lines, we examined the differences in biological character and drug sensitivity affected by cisplatin between human lung adenocarcinoma cell lines A549 and P15. The allelic expression ofp73 in A549 and P15 was studied by Sty I polymorphism analysis. MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay was used to analyse the response of these two cell lines to cisplatin. The changes in the biological behaviour of the cells were observed by colony formation assay. The drug‐induced apoptosis of cells was measured by Hoechst and TUNEL techniques. Homozygous allelic expression was demonstrated in the two cell lines. AT/AT genotype appeared in A549, GC/GC genotype was detected in P15. Although the colony formation number decreased with an increasing cisplatin dose (P<0.05), there was no significant difference in colony‐formation rate in these two cell lines (P>0.05). MTT assay also determined that the 50% inhibitory concentration (IC50) for A549 and P15 was 8.9 and 11.6 μmol/l, respectively; the IC50 value did not differ significantly between A549 and P15 (P>0.05). The cell apoptosis induced by cisplatin was demonstrated in both A549 and P15. P73 G4C14‐A4T14 polymorphisms at exon 2 existed in human NSCLC (non‐small‐cell lung cancer) cell lines. Our data in vitro suggest that p73 G4C14‐A4T14 polymorphism has no significant relationship to the cisplatin‐based chemosensitivity in human lung adenocarcinoma.  相似文献   

9.
Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor has various cellular effects such as cell growth and apoptosis. In the present study, we evaluated the effects of SBHA on the growth and death of A549 lung cancer cells. SBHA inhibited the growth of A549 cells with an IC50 of approximately 50 μM at 72 h in a dose-dependent manner. DNA flow cytometric analysis indicated that SBHA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, as evidenced by sub-G1 cells and annexin V-FITC staining cells. SBHA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, Bax increase, and the activation of caspase-3. All of the tested caspase inhibitors significantly rescued some cells from SBHA-induced A549 cell death. However, none of the caspase inhibitors prevented the loss of MMP (ΔΨm) induced by SBHA. Intracellular reactive oxygen species (ROS) levels including O 2 ?? were increased in 50 μM SBHA-treated A549 cells. None of the caspase inhibitors attenuated ROS levels in these cells. SBHA also elevated the number of glutathione (GSH)-depleted cells in A549 cells, which was reduced by treatment with caspase inhibitors. In conclusion, this is the first report that SBHA inhibited the growth of A549 lung cancer cells via caspase-dependent apoptosis, which was related to GSH depletion rather than changes in ROS level.  相似文献   

10.
Both the root and stem bark of Mahonia species were popular folk medicines. The plant has several proven biological activities including anti-bacterial, anti-fungal, and anti-inflammatory effects. However, Mahonia has not been studied for its anticancer effects. In the present study, we made extracts from Mahonia oiwakensis (MOE), a selected species in Taiwan, and investigated their effects on various human lung cells. We found that MOE-induced apoptotic death in human A549 non-small-cell lung carcinoma (NSCLC) cells in a dose- and time-dependent manner. Treatment with the extracts also caused an increase in the sub-G1 fraction of cells, chromosome condensation, and DNA fragmentation. The mitochondrial-mediated pathway was implicated in this MOE-induced apoptosis as evidenced by the activation of the caspase cascade, cleavage of poly (ADP-ribose) polymerase (PARP), disruption of mitochondrial membrane potential, and release of cytochrome C. A higher ratio of Bax/Bcl-2 proteins and cleavage of Bid were also observed in MOE-induced cell apoptosis. In A549 tumor-xenografted nude mice, MOE also retarded in vivo proliferation (P < 0.05) and induced apoptosis in tumor cells, as shown by a decrease in Ki-67-positive staining (P < 0.05) and increased transferase-mediated dUTP nick-end labeling (TUNEL)-positive staining (P < 0.05). In conclusion, MOE inhibits the growth of human lung cancer cells in vitro and in vivo, suggesting that it may have therapeutic potential against human lung cancer.  相似文献   

11.
BackgroundSiO2 nanoparticles (nm SiO2) are ubiquitous in daily life and are acknowledged to be detrimental to human health. Bletilla striata is a traditional medicine used for generations in China and its polysaccharide has the anti-pulmonary fibrosis effect.PurposeTo investigate the lung protective effect of the small molecules (n-BuOH extract) of B. striata and clarify the underlying mechanism.Study design and methodsC57BL/6 mice were subjected to intratracheal instillation with nm SiO2 nanoparticle suspension (7 mg/kg) to construct the in vivo model of nm SiO2-induced lung injury. The chemical profile of the n-BuOH extract of B. striata was investigated by HPLC analysis using authentic samples isolated from B. striata. Gymnoside II with the most potent chemoprotective capacity in the n-BuOH extract was used to clarify the potential bio-active molecular basis of the n-BuOH extract using in vitro experiments. The cytotoxicity, apoptosis, oxidative stress, and the Nrf2 signaling pathway were examined in SiO2-induced A549 cells. ML385 was adopted to down-regulate the Nrf2 expression.ResultsThe n-BuOH extract of B. striata (40 mg/kg) could alleviate the SiO2-induced lung injury by increasing Nrf2 expression and thereby suppressing Bax/Bcl-2 pathway in the nm SiO2-induced mice model. The chemical profile study showed that militarine, gymnoside II, and 4-allyl-2, 6-dimethoxyphenol glucoside were the main constituents of n-BuOH extract. Studies on gymnoside II revealed that it could partially restore the SiO2-induced decline in cell viability while did not affect the growth of normal A549 cells within the concentration range of 1-50 μM, suggesting a protective effect against nm SiO2 in lung A549 cells. The hoechst 33258 staining, flow cytometry, and western blot experiments demonstrated that gymnoside II (25 μM) could partially reverse the SiO2-induced cell apoptosis and ROS production by enhancing Nrf2, HO-1, and γ-GCSc expressions and Nrf2 silencing by ML385 abrogated the effects of gymnoside II (25 μM) on apoptosis and ROS production in A549 cells.ConclusionThe present study suggests that in addition to the polysaccharide, small molecules (n-BuOH extract) of B. striata can also elicit a protective effect on lung injuries through the Nrf2-dependent mechanism and gymnoside II is one of the main bio-active constituents contributing to the n-BuOH extract-elicited lung protective effect against nm SiO2.  相似文献   

12.
In the rapidly expanding era of cancer target therapy, regulators of apoptosis are emerging as attractive therapeutic targets. X-linked inhibitor of apoptosis (XIAP) is of specific interest owing to its characteristic overexpression in a wide variety of neoplasms, with a resultant survival advantage for tumor cells and treatment resistance. In this study, we examined three pyrazolo [3,4-d] pyridazine derivatives (PPDs) through molecular modeling and studied their modes of interaction with XIAP-BIR3 domain. PPD-1, which possessed the highest binding affinity with XIAP, was tested on A549 (lung cancer cell line); HCT-116 (colorectal carcinoma cell line); HEPG2 (liver carcinoma cell line), HFB4 (normal human skin melanocyte cell line) and WI-38 (human embryonic lung fibroblasts). In comparison to cisplatin as a positive control, PPD-1 yielded remarkable cytotoxicity on all cancer cell lines, with the highest anti-tumor activity on A549 and a favorable therapeutic ratio. Flow cytometry studies concluded that PPD-1 treatment induces Sub G1 and G2/M cell cycle arrest and apoptosis. The percentage of apoptotic cells in PPD-1 treated A549 cells was considerably higher than that in untreated cells (10.06% vs 0.57%, respectively). To further investigate the mechanism of induction of apoptosis by PPD-1, Real time-PCR was used to quantify the expression levels of key apoptotic regulators. Significant overexpression of the effector capsase-3, pro-apoptotic bax and tumor suppressor gene p53 were noted as compared to untreated cells (7.19 folds, 7.28 folds, and 5.08 folds, respectively). Moreover, PPD-1 inhibited the expression of the anti-apoptotic bcl-2 gene to 0.22 folds. These findings demonstrate that PPD-1 treatment disrupts the Bcl-2/BAX balance in lung cancer cell lines, leading to apoptosis induction possibly through intrinsic mitochondria-dependent pathway. These novel insights elucidate the mechanism of PPD-1 cytotoxicity in lung cancer cell lines and offer a promising therapeutic approach that needs further study.  相似文献   

13.
We investigated whether snake venom toxin (SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner; however, this reduction did not occur in TRAIL resistant HT-29, A549 and HepG2 cells with an even higher dose of TRAIL. SVT, but not TRAIL enhanced expression of cell death receptor (DR) in TRAIL resistant cancer cells in a dose-dependent manner. A combination of SVT with TRAIL significantly inhibited cell growth of TRAIL resistant HT-29, A549 and HepG2 cells. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, -8, -9 and Bax. However, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory and apoptosis blocking effects of SVT in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression, expression of the apoptosis related protein such as caspase-3 and-9, as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals.  相似文献   

14.
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.  相似文献   

15.
Zuojinwan (ZJW), a famous Chinese medicinal formula, contains two medicinal herbs Coptis chinese Frach and Evodia rutaecarpa (Juss.) Benth in the ratio of 6: 1. The inhibitory effects of ZJW on eight kinds of human cancer cell lines including SMMC-7721, BEL-7402, BEL-7404, HepG2, A549, NCI-H446, NCI-H460 and HCT- 116 cells were evaluated, and the possible mechanism was investigated. The growths of the eight kinds of cancer cells were inhibited by ZJW assessed through MTT assay. Flow cytometry assay revealed a sub-G1 peak with reduced DNA content was formed. The cell cycle was arrested in the G0/G1 phase in ZJW-treated SMMC-7721 and HepG2 cells, and in the S phase for NCI-H460 cells. Significant DNA damage was produced by ZJW assessed with single-cell gel electrophoresis assay. Morphological changes were also observed. Caspase-3 and -9 activities were increased following ZJW treatment. Western blot analysis showed that Bax and Bak protein levels were increased after ZJW treatment, while Bcl-2 and Bcl-xl protein levels were decreased. Our results suggest that ZJW has significant anti-cancer activities due to induction of mitochondria- dependent apoptosis pathway. Therefore, ZJW has the potential to be a novel chemotherapy drug to treat hepatoma, lung cancer and colon cancer by suppressing tumor growth.  相似文献   

16.
运用中药龙葵提取物澳洲茄边碱处理人肺腺癌A549细胞,研究其对A549细胞的抑制及凋亡作用,探讨澳洲茄边碱对肺腺癌的作用机制。通过细胞增殖抑制实验检测不同浓度澳洲茄边碱对A549细胞增殖的影响,采用蛋白印迹法(Western blot)检测凋亡蛋白Caspase3的表达水平,采用流式细胞术测定处理后A549细胞的凋亡水平及细胞周期变化。结果显示,不同浓度澳洲茄边碱均能抑制A549的增殖,呈浓度效应;用不同浓度澳洲茄边碱处理A549细胞24h后,Western blot结果显示,随药物浓度增大,凋亡蛋白Caspase3水解程度增高,对A549凋亡作用明显增强;流式细胞术检测细胞凋亡的结果显示,20μmol·L-1澳洲茄边碱处理A549细胞后,细胞发生明显凋亡,其中早期凋亡细胞比例为25.35%,晚期凋亡细胞比例为11.47%;流式细胞术检测细胞周期的结果显示,20μmol·L-1澳洲茄边碱处理A549细胞后,细胞周期阻滞于G2/M期。本研究结果表明,澳洲茄边碱通过激活细胞凋亡通路中的Caspase3蛋白触发细胞凋亡,同时将A549细胞阻滞在细胞周期的G2/M期,抑制人肺腺癌细胞A549的生长。  相似文献   

17.
6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN or CD437), originally identified as a retinoic acid receptor γ-selective retinoid, was previously shown to induce growth inhibition and apoptosis in human breast cancer cells. In this study, we investigated the role of AHPN/CD437 and its mechanism of action in human lung cancer cell lines. Our results demonstrated that AHPN/CD437 effectively inhibited lung cancer cell growth by inducing G0/G1 arrest and apoptosis, a process that is accompanied by rapid induction of c-Jun, nur77, and p21WAF1/CIP1. In addition, we found that expression of p53 and Bcl-2 was differentially regulated by AHPN/CD437 in different lung cancer cell lines and may play a role in regulating AHPN/CD437-induced apoptotic process. On constitutive expression of the c-JunAla(63,73) protein, a dominant-negative inhibitor of c-Jun, in A549 cells, nur77 expression and apoptosis induction by AHPN/CD437 were impaired, whereas p21WAF1/CIP1 induction and G0/G1 arrest were not affected. Furthermore, overexpression of antisense nur77 RNA in A549 and H460 lung cancer cell lines largely inhibited AHPN/CD437-induced apoptosis. Thus, expression of c-Jun and nur77 plays a critical role in AHPN/CD437-induced apoptosis. Together, our results reveal a novel pathway for retinoid-induced apoptosis and suggest that AHPN/CD437 or analogs may have a better therapeutic efficacy against lung cancer.  相似文献   

18.
Chemoresistance and migration represent major obstacles in the therapy of non‐small‐cell lung cancer (NSCLC), which accounts for approximately 85% of lung cancer patients in clinic. In the present study, we report that the compound C1632 is preferentially distributed in the lung after oral administration in vivo with high bioavailability and limited inhibitory effects on CYP450 isoenzymes. We found that C1632 could simultaneously inhibit the expression of LIN28 and block FGFR1 signalling transduction in NSCLC A549 and A549R cells, resulting in significant decreases in the phosphorylation of focal adhesion kinase and the expression of matrix metalloproteinase‐9. Consequently, C1632 effectively inhibited the migration and invasion of A549 and A549R cells. Meanwhile, C1632 significantly suppressed the cell viability and the colony formation of A549 and A549R cells by inhibiting DNA replication and inducing G0/G1 cell cycle arrest. Interestingly, compared with A549 cells, C1632 possesses the same or even better anti‐migration and anti‐proliferation effects on A549R cells, regardless of drug resistance. In addition, C1632 also displayed the capacity to inhibit the growth of A549R xenograft tumours in mice. Altogether, these findings reveal the potential of C1632 as a promising anti‐NSCLC agent, especially for chemotherapy‐resistant NSCLC treatment.  相似文献   

19.
The accumulation mechanisms of amiodarone (AMD) involving transporters in lung alveolar epithelial type II cells were studied. The uptake of AMD was examined using human alveolar epithelial-derived cell line A549 as a model. AMD was transported by the carrier-mediated system, and the apparent Km and Vmax values were 66.8 ± 30.3 μM and 49.7 ± 9.7 nmol/mg protein/5 min, respectively. The uptake of AMD by A549 cells was Na+-independent and was inhibited by substrates of human organic anion transporting polypeptide (OATP). The inhibition profiles were similar to the inhibitory effects of several compounds on OATP2B1-mediated E-3-S transport, and RT-PCR analysis showed mRNA expression of OATP2B1 and 1B3 in A549 cells. SiRNAs targeted to the OATP2B1 gene decreased the OATP2B1 mRNA expression level in A549 cells up to about 50% and reduced the uptake of AMD up to about 40%. These results indicate that AMD uptake mediated by carriers, including OATP2B1, might lead to accumulation of AMD in the lung and AMD-induced pulmonary toxicity (AIPT).  相似文献   

20.
Previous studies on PTP4A3 mainly focused on tumor metastasis due to the close relationship between the overexpression of lung cancer and metastasis. However, the role of PTP4A3 in the proliferation of tumor still has remained unclear. To investigate the role of PTP4A3 in cell growth of lung cancer, we constructed PTP4A3-siRNA expressing lentivirus and infected human lung cancer H1299 cells, and then examined the inhibitory effect of PTP4A3 in vitro. The levels of PTP4A3 mRNA and protein in H1299 cells decreased after PTP4A3-siRNA lentivirus infection. The growth and colony formation of the infected cells were also inhibited, indicating that PTP4A3 gene is closely associated with the proliferation of H1299 cells. In addition, after PTP4A3 specific siRNA lentivirus infection, it was notable that whilst H1299 cells in G1 phase apparently reduced, both of H1299 cells in G2/M phase and the cell apoptosis increased significantly. This finding indicated the close relationship between PTP4A3 gene and apoptosis in the H1299 cells. These results come to their conclusion that PTP4A3 plays an important role in the growth of lung cancer cells. PTP4A3 may be considered as a valuable target for anti-tumor therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号